西西软件下载最安全的下载网站、值得信赖的软件下载站!
鐢熸椿鏈嶅姟
鏀粯瀹濋挶鍖�(Alipay)V10.2.53.7000 瀹夊崜鐗�鏀粯瀹濋挶鍖�(Alipay)V10.2.53.7000 瀹夊崜鐗�
鐧惧害鍦板浘瀵艰埅2022V15.12.10 瀹夊崜鎵嬫満鐗�鐧惧害鍦板浘瀵艰埅2022V15.12.10 瀹夊崜鎵嬫満鐗�
鎵嬫満娣樺疂瀹㈡埛绔痸10.8.40瀹樻柟鏈€鏂扮増鎵嬫満娣樺疂瀹㈡埛绔痸10.8.40瀹樻柟鏈€鏂扮増
鐣呴€旂綉鎵嬫満瀹㈡埛绔痸5.6.9 瀹樻柟鏈€鏂扮増鐣呴€旂綉鎵嬫満瀹㈡埛绔痸5.6.9 瀹樻柟鏈€鏂扮増
鍗冭亰鐭ヨ瘑鏈嶅姟appv4.5.1瀹樻柟鐗�鍗冭亰鐭ヨ瘑鏈嶅姟appv4.5.1瀹樻柟鐗�
褰遍煶鎾斁
p2psearcher瀹夊崜鐗�7.3  鎵嬫満鐗�p2psearcher瀹夊崜鐗�7.3 鎵嬫満鐗�
閰风嫍闊充箰2022瀹樻柟鐗圴11.0.8 瀹樻柟瀹夊崜鐗�閰风嫍闊充箰2022瀹樻柟鐗圴11.0.8 瀹樻柟瀹夊崜鐗�
鐖卞鑹烘墜鏈虹増v13.1.0鐖卞鑹烘墜鏈虹増v13.1.0
鐧惧害褰遍煶7.13.0 瀹樻柟鏈€鏂扮増鐧惧害褰遍煶7.13.0 瀹樻柟鏈€鏂扮増
褰遍煶鍏堥攱v6.9.0 瀹夊崜鎵嬫満鐗�褰遍煶鍏堥攱v6.9.0 瀹夊崜鎵嬫満鐗�
闃呰宸ュ叿
鑵捐鍔ㄦ极V9.11.5 瀹夊崜鐗�鑵捐鍔ㄦ极V9.11.5 瀹夊崜鐗�
涔︽棗灏忚鍏嶈垂鐗堟湰v11.5.5.153 瀹樻柟鏈€鏂扮増涔︽棗灏忚鍏嶈垂鐗堟湰v11.5.5.153 瀹樻柟鏈€鏂扮増
QQ闃呰鍣╝ppV7.7.1.910 瀹樻柟鏈€鏂扮増QQ闃呰鍣╝ppV7.7.1.910 瀹樻柟鏈€鏂扮増
鎳掍汉鐣呭惉鍚功appv7.1.5 瀹樻柟瀹夊崜鐗�鎳掍汉鐣呭惉鍚功appv7.1.5 瀹樻柟瀹夊崜鐗�
璧风偣璇讳功app鏂扮増鏈�20227.9.186 瀹夊崜鐗�璧风偣璇讳功app鏂扮増鏈�20227.9.186 瀹夊崜鐗�
閲戣瀺鐞嗚储
骞冲畨璇佸埜瀹塭鐞嗚储V9.1.0.1 瀹樻柟瀹夊崜鐗�骞冲畨璇佸埜瀹塭鐞嗚储V9.1.0.1 瀹樻柟瀹夊崜鐗�
娴烽€氳瘉鍒告墜鏈虹増(e娴烽€氳储)8.71 瀹樻柟瀹夊崜鐗�娴烽€氳瘉鍒告墜鏈虹増(e娴烽€氳储)8.71 瀹樻柟瀹夊崜鐗�
涓滄捣璇佸埜涓滄捣鐞嗚储4.0.5 瀹夊崜鐗�涓滄捣璇佸埜涓滄捣鐞嗚储4.0.5 瀹夊崜鐗�
涓摱璇佸埜绉诲姩鐞嗚储杞欢6.02.010 瀹樻柟瀹夊崜鐗�涓摱璇佸埜绉诲姩鐞嗚储杞欢6.02.010 瀹樻柟瀹夊崜鐗�
鍗庨緳璇佸埜灏忛噾鎵嬫満鐞嗚储杞欢3.2.4 瀹夊崜鐗�鍗庨緳璇佸埜灏忛噾鎵嬫満鐞嗚储杞欢3.2.4 瀹夊崜鐗�
鎵嬫満閾惰
绂忓缓鍐滄潙淇$敤绀炬墜鏈洪摱琛屽鎴风2.3.4 瀹夊崜鐗�绂忓缓鍐滄潙淇$敤绀炬墜鏈洪摱琛屽鎴风2.3.4 瀹夊崜鐗�
鏄撳埗浣滆棰戝壀杈慳pp4.1.16瀹夊崜鐗�鏄撳埗浣滆棰戝壀杈慳pp4.1.16瀹夊崜鐗�
鏀粯瀹濋挶鍖�(Alipay)V10.2.53.7000 瀹夊崜鐗�鏀粯瀹濋挶鍖�(Alipay)V10.2.53.7000 瀹夊崜鐗�
涓浗宸ュ晢閾惰鎵嬫満閾惰appV7.0.1.2.5 瀹夊崜鐗�涓浗宸ュ晢閾惰鎵嬫満閾惰appV7.0.1.2.5 瀹夊崜鐗�
涓浗閾惰鎵嬫満閾惰瀹㈡埛绔�7.2.5 瀹樻柟瀹夊崜鐗�涓浗閾惰鎵嬫満閾惰瀹㈡埛绔�7.2.5 瀹樻柟瀹夊崜鐗�
浼戦棽鐩婃櫤
鑵捐鐚庨奔杈句汉鎵嬫満鐗圴2.3.0.0 瀹樻柟瀹夊崜鐗�鑵捐鐚庨奔杈句汉鎵嬫満鐗圴2.3.0.0 瀹樻柟瀹夊崜鐗�
鍔茶垶鍥㈠畼鏂规鐗堟墜娓竩1.2.1瀹樻柟鐗�鍔茶垶鍥㈠畼鏂规鐗堟墜娓竩1.2.1瀹樻柟鐗�
楗ラタ椴ㄩ奔杩涘寲鏃犻檺閽荤煶鐗坴7.8.0.0瀹夊崜鐗�楗ラタ椴ㄩ奔杩涘寲鏃犻檺閽荤煶鐗坴7.8.0.0瀹夊崜鐗�
妞嶇墿澶ф垬鍍靛案鍏ㄦ槑鏄�1.0.91 瀹夊崜鐗�妞嶇墿澶ф垬鍍靛案鍏ㄦ槑鏄�1.0.91 瀹夊崜鐗�
鍔ㄤ綔灏勫嚮
鍦颁笅鍩庣獊鍑昏€卋t鐗�1.6.3 瀹樻柟鐗�鍦颁笅鍩庣獊鍑昏€卋t鐗�1.6.3 瀹樻柟鐗�
瑁呯敳鑱旂洘1.325.157 瀹夊崜鐗�瑁呯敳鑱旂洘1.325.157 瀹夊崜鐗�
鍦f枟澹槦鐭㈤泦缁搗4.2.1 瀹夊崜鐗�鍦f枟澹槦鐭㈤泦缁搗4.2.1 瀹夊崜鐗�
閬ぉ3D鎵嬫父1.0.9瀹夊崜鐗�閬ぉ3D鎵嬫父1.0.9瀹夊崜鐗�
濉旈槻娓告垙
瀹夊崜妞嶇墿澶ф垬鍍靛案2榛戞殫鏃朵唬淇敼鐗圴1.9.5 鏈€鏂扮増瀹夊崜妞嶇墿澶ф垬鍍靛案2榛戞殫鏃朵唬淇敼鐗圴1.9.5 鏈€鏂扮増
涔辨枟瑗挎父2v1.0.150瀹夊崜鐗�涔辨枟瑗挎父2v1.0.150瀹夊崜鐗�
淇濆崼钀濆崪3鏃犻檺閽荤煶鏈€鏂扮増v2.0.0.1 瀹夊崜鐗�淇濆崼钀濆崪3鏃犻檺閽荤煶鏈€鏂扮増v2.0.0.1 瀹夊崜鐗�
鍙h鑻遍泟鍗曟満鐗�1.2.0 瀹夊崜鐗�鍙h鑻遍泟鍗曟満鐗�1.2.0 瀹夊崜鐗�
灏忓皬鍐涘洟瀹夊崜鐗�2.7.4 鏃犻檺閲戝竵淇敼鐗�灏忓皬鍐涘洟瀹夊崜鐗�2.7.4 鏃犻檺閲戝竵淇敼鐗�
璧涜溅绔炴妧
鐧诲北璧涜溅2鎵嬫父1.47.1  瀹夊崜鐗�鐧诲北璧涜溅2鎵嬫父1.47.1 瀹夊崜鐗�
涓€璧锋潵椋炶溅瀹夊崜鐗坴2.9.14 鏈€鏂扮増涓€璧锋潵椋炶溅瀹夊崜鐗坴2.9.14 鏈€鏂扮増
璺戣窇鍗′竵杞︽墜鏈虹増瀹樻柟鏈€鏂扮増v1.16.2 瀹夊崜鐗�璺戣窇鍗′竵杞︽墜鏈虹増瀹樻柟鏈€鏂扮増v1.16.2 瀹夊崜鐗�
鐙傞噹椋欒溅8鏋侀€熷噷浜戜慨鏀圭増(鍏嶆暟鎹寘)v4.6.0j 閲戝竵鏃犻檺鐗�鐙傞噹椋欒溅8鏋侀€熷噷浜戜慨鏀圭増(鍏嶆暟鎹寘)v4.6.0j 閲戝竵鏃犻檺鐗�
鐧句箰鍗冪偖鎹曢奔2021鏈€鏂扮増5.78 瀹夊崜鐗�鐧句箰鍗冪偖鎹曢奔2021鏈€鏂扮増5.78 瀹夊崜鐗�
瑙掕壊鎵紨
姊﹀够鍓戣垶鑰呭彉鎬佺増1.0.1.2瀹夊崜鐗�姊﹀够鍓戣垶鑰呭彉鎬佺増1.0.1.2瀹夊崜鐗�
浠欏浼犺ro澶嶅叴瀹夊崜鐗�1.20.3鏈€鏂扮増浠欏浼犺ro澶嶅叴瀹夊崜鐗�1.20.3鏈€鏂扮増
姊﹀够璇涗粰鎵嬫父鐗�1.3.6 瀹樻柟瀹夊崜鐗�姊﹀够璇涗粰鎵嬫父鐗�1.3.6 瀹樻柟瀹夊崜鐗�
鐜嬭€呰崳鑰€V3.72.1.1 瀹夊崜鏈€鏂板畼鏂圭増鐜嬭€呰崳鑰€V3.72.1.1 瀹夊崜鏈€鏂板畼鏂圭増
璋佸灏忚溅寮烘墜鏈虹増v1.0.49 瀹夊崜鐗�璋佸灏忚溅寮烘墜鏈虹増v1.0.49 瀹夊崜鐗�
绯荤粺杞欢
mac纾佺洏鍒嗗尯宸ュ叿(Paragon Camptune X)V10.8.12瀹樻柟鏈€鏂扮増mac纾佺洏鍒嗗尯宸ュ叿(Paragon Camptune X)V10.8.12瀹樻柟鏈€鏂扮増
鑻规灉鎿嶄綔绯荤粺MACOSX 10.9.4 Mavericks瀹屽叏鍏嶈垂鐗�鑻规灉鎿嶄綔绯荤粺MACOSX 10.9.4 Mavericks瀹屽叏鍏嶈垂鐗�
Rar瑙e帇鍒╁櫒mac鐗坴1.4 瀹樻柟鍏嶈垂鐗�Rar瑙e帇鍒╁櫒mac鐗坴1.4 瀹樻柟鍏嶈垂鐗�
Mac瀹夊崜妯℃嫙鍣�(ARC Welder)v1.0 瀹樻柟鏈€鏂扮増Mac瀹夊崜妯℃嫙鍣�(ARC Welder)v1.0 瀹樻柟鏈€鏂扮増
Charles for MacV3.9.3瀹樻柟鐗�Charles for MacV3.9.3瀹樻柟鐗�
缃戠粶宸ュ叿
鎼滅嫍娴忚鍣╩ac鐗坴5.2 瀹樻柟姝e紡鐗�鎼滅嫍娴忚鍣╩ac鐗坴5.2 瀹樻柟姝e紡鐗�
閿愭嵎瀹㈡埛绔痬ac鐗圴1.33瀹樻柟鏈€鏂扮増閿愭嵎瀹㈡埛绔痬ac鐗圴1.33瀹樻柟鏈€鏂扮増
蹇墮mac鐗坴1.3.2 瀹樻柟姝e紡鐗�蹇墮mac鐗坴1.3.2 瀹樻柟姝e紡鐗�
鏋佺偣浜旂瑪Mac鐗�7.13姝e紡鐗�鏋佺偣浜旂瑪Mac鐗�7.13姝e紡鐗�
濯掍綋宸ュ叿
Apple Logic Pro xV10.3.2Apple Logic Pro xV10.3.2
Adobe Premiere Pro CC 2017 mac鐗坴11.0.0 涓枃鐗�Adobe Premiere Pro CC 2017 mac鐗坴11.0.0 涓枃鐗�
鍗冨崈闈欏惉Mac鐗圴9.1.1 瀹樻柟鏈€鏂扮増鍗冨崈闈欏惉Mac鐗圴9.1.1 瀹樻柟鏈€鏂扮増
Mac缃戠粶鐩存挱杞欢(MacTV)v0.121 瀹樻柟鏈€鏂扮増Mac缃戠粶鐩存挱杞欢(MacTV)v0.121 瀹樻柟鏈€鏂扮増
Adobe Fireworks CS6 Mac鐗圕S6瀹樻柟绠€浣撲腑鏂囩増Adobe Fireworks CS6 Mac鐗圕S6瀹樻柟绠€浣撲腑鏂囩増
鍥惧舰鍥惧儚
AutoCAD2015 mac涓枃鐗堟湰v1.0 瀹樻柟姝e紡鐗�AutoCAD2015 mac涓枃鐗堟湰v1.0 瀹樻柟姝e紡鐗�
Adobe Photoshop cs6 mac鐗坴13.0.3 瀹樻柟涓枃鐗�Adobe Photoshop cs6 mac鐗坴13.0.3 瀹樻柟涓枃鐗�
Mac鐭㈤噺缁樺浘杞欢(Sketch mac)v3.3.2 涓枃鐗�Mac鐭㈤噺缁樺浘杞欢(Sketch mac)v3.3.2 涓枃鐗�
Adobe After Effects cs6 mac鐗坴1.0涓枃鐗�Adobe After Effects cs6 mac鐗坴1.0涓枃鐗�
Adobe InDesign cs6 mac1.0 瀹樻柟涓枃鐗�Adobe InDesign cs6 mac1.0 瀹樻柟涓枃鐗�
搴旂敤杞欢
Mac鐗堝揩鎾�1.1.26 瀹樻柟姝e紡鐗圼dmg]Mac鐗堝揩鎾�1.1.26 瀹樻柟姝e紡鐗圼dmg]
Mac璇诲啓NTFS(Paragon NTFS for Mac)12.1.62 瀹樻柟姝e紡鐗�Mac璇诲啓NTFS(Paragon NTFS for Mac)12.1.62 瀹樻柟姝e紡鐗�
杩呴浄10 for macv3.4.1.4368 瀹樻柟鏈€鏂扮増杩呴浄10 for macv3.4.1.4368 瀹樻柟鏈€鏂扮増
Mac涓嬫渶寮哄ぇ鐨勭郴缁熸竻鐞嗗伐鍏�(CleanMyMac for mac)v3.1.1 姝e紡鐗�Mac涓嬫渶寮哄ぇ鐨勭郴缁熸竻鐞嗗伐鍏�(CleanMyMac for mac)v3.1.1 姝e紡鐗�
鑻规灉BootCamp5.1.5640 瀹樻柟鏈€鏂扮増鑻规灉BootCamp5.1.5640 瀹樻柟鏈€鏂扮増

首页编程开发其它知识 → C/Java/Python/Objective-C多种编程语言实现递归计算

C/Java/Python/Objective-C多种编程语言实现递归计算

相关文章发表评论 来源:西西整理时间:2013/1/10 21:46:35字体大小:A-A+

作者:西西点击:115评论:1次标签: 递归

  • 类型:源码相关大小:34KB语言:中文 评分:5.0
  • 标签:
立即下载

同样的算法多种编程语言在Mac的OS X上跑会是个什么情况呢?

于是写了四种语言的斐波那契数列实现:C、Java、Python、Objective-C,而且都采用了效率最差耗时最长的递归实现,不使用其他数据结构或公式,这样对比起来更容易一些,如果使用迭代方式的话,执行时间太短很难比较。

第一轮测试不做任何优化,第二轮分别做一些编译和环境的调优处理,然后再看一下结果。代码如下:

c语言,使用函数实现递归计算

#include <stdio.h>

long fib(int n){
    if (n < 2)
        return n;
    return fib(n - 1) + fib(n - 2);
}

int main() {
    printf( "fib= %ld", fib(40) );
    return 0;
}

Java,使用静态方法实现递归计算

public class fib {

    public static long jfib(int n ){
        if (n < 2)
            return n;
        return jfib(n - 1) + jfib(n - 2);
    }

    public static void main(String[] args) {
        System.out.println( jfib( 40 ) );
    }
}

Python,使用函数实现递归计算

def fib(n):
    if n < 2:
        return n
    return fib(n - 1) + fib(n - 2)

print fib(40) 

Objective-C,使用block实现递归计算

#import <Foundation/Foundation.h>

int main(int argc, const char * argv[])
{
    @autoreleasepool {
        
        long (^__block fib)(long) = ^(long num){
            if ( num < 2 )
                return num;
            return fib(num-1) + fib(num-2);
        };
        
        NSLog(@"Fib: %ld", fib(40) );
        
    }
    return 0;
}

基本的测试环境:

C语言:i686-apple-darwin11-llvm-gcc-4.2

Java:java version "1.6.0_37",HotSpot(TM) 64-Bit

Python:Python 2.7.2 with GCC 4.2.1

Pypy:PyPy 1.9.0 with GCC 4.2.1

Objective-C:2.0 with LLVM 4.1

使用time命令计算执行时间,例如time python fib.py

直接编译运行的结果还是比较让人吃惊的:

C:1 秒

Java:0.63 秒

Python:45.79 秒

Objective-C:1.3 秒

结果:Java > C > Objective-C > Python

这个结果让人感到,Java真的不慢,动态语言有点慢。

第二轮测试,针对C程序,使用gcc -O进行优化编译;针对Python,使用pypy替换原生的python环境,针对Objective-C,设置优化Level为Fastest,结果如下:

C:0.35 秒

Java:0.63 秒

Python:4.96 秒

Objective-C:1.04 秒

结果:C > Java > Objective-C > Python

这个结果告诉我们,C还是最快的,pypy对python的优化处理还是非常明显的。 

以上数据是在OS X平台上的、性能比例放大的测试结果,在实际应用中,如果针对不同场景采用了正确的算法,差距就不会有这么大,比如我们用迭代方式改写一下python的实现,如下:

def fib(n):
    if n < 2:
        return n
    a1 = a2 = a3 = 1
    while n>2:
        n -= 1
        a3=a1+a2
        a1=a2
        a2=a3

    return a3

print fib(40)

这时无论使用Python编译执行还是Pypy执行,基本都是0.02秒左右,没有太大差别。以上代码的执行结果是102334155,有兴趣的可以在自己的机器上试试。

声明:

1、以上代码仅供参考娱乐,实际应用中如果使用斐波那契数列,绝对不要使用递归调用的方式,迭代法应该是不错的选择。

2、数据量加大可能会有不同的结果,有兴趣的可以尝试下。

实验完成,希望对大家有参考。

相关评论

阅读本文后您有什么感想? 已有人给出评价!

  • 3 喜欢喜欢
  • 2 顶
  • 1 难过难过
  • 2 囧
  • 12 围观围观
  • 14 无聊无聊

热门评论

最新评论

发表评论 查看所有评论(1)

昵称:
表情: 高兴 可 汗 我不要 害羞 好 下下下 送花 屎 亲亲
字数: 0/500 (您的评论需要经过审核才能显示)
推荐文章

没有数据