西西软件园多重安全检测下载网站、值得信赖的软件下载站!
软件
软件
文章
搜索
缁崵绮哄銉ュ徔
U婢堆冪瑎v4.7.37.56 閺堚偓閺傛壆澧�U婢堆冪瑎v4.7.37.56 閺堚偓閺傛壆澧�
HD Tune  Prov5.75 濮瑰瀵茬紒鑳閻楃懓鍩嗛悧锟�HD Tune Prov5.75 濮瑰瀵茬紒鑳閻楃懓鍩嗛悧锟�
DiskGenius 娑撴挷绗熼悧鍦�5.2.1.941 鐎规ɑ鏌熼悧锟�DiskGenius 娑撴挷绗熼悧鍦�5.2.1.941 鐎规ɑ鏌熼悧锟�
360鏉烆垯娆㈢粻鈥愁啀v7.5.0.1460 鐎规ɑ鏌熼張鈧弬鎵360鏉烆垯娆㈢粻鈥愁啀v7.5.0.1460 鐎规ɑ鏌熼張鈧弬鎵
Cpu-Z娑擃厽鏋冮悧鍧�1.98.0 缂佽儻澹婃稉顓熸瀮閻楋拷Cpu-Z娑擃厽鏋冮悧鍧�1.98.0 缂佽儻澹婃稉顓熸瀮閻楋拷
缂冩垹绮跺銉ュ徔
閼垫崘顔嗛悽浣冨壋缁犫€愁啀V15.2 鐎规ɑ鏌熷锝呯础閻楋拷閼垫崘顔嗛悽浣冨壋缁犫€愁啀V15.2 鐎规ɑ鏌熷锝呯础閻楋拷
office2016濠碘偓濞茶浼愰崗绌攎sv19.5.2 鐎规ɑ鏌熼張鈧弬鎵office2016濠碘偓濞茶浼愰崗绌攎sv19.5.2 鐎规ɑ鏌熼張鈧弬鎵
鏉╁懘娴�11閺堚偓閺傛壆澧梫11.3.6.1870 鐎规ɑ鏌熼悧锟�鏉╁懘娴�11閺堚偓閺傛壆澧梫11.3.6.1870 鐎规ɑ鏌熼悧锟�
360閸忓秷鍨倃ifi5.3.0.5000 鐎规ɑ鏌熼張鈧弬鎵360閸忓秷鍨倃ifi5.3.0.5000 鐎规ɑ鏌熼張鈧弬鎵
360鐎瑰鍙忓ù蹇氼潔閸o拷2022v13.1.5188.0 鐎规ɑ鏌熷锝呯础閻楋拷360鐎瑰鍙忓ù蹇氼潔閸o拷2022v13.1.5188.0 鐎规ɑ鏌熷锝呯础閻楋拷
婢舵艾鐛熸担鎾惰
闁伴攱鍨滈棅鍏呯閻╋拷2022v9.1.6.2 鐎规ɑ鏌熷锝呯础閻楋拷闁伴攱鍨滈棅鍏呯閻╋拷2022v9.1.6.2 鐎规ɑ鏌熷锝呯础閻楋拷
閺嗘挳顥撹ぐ閬嶇叾2021V5.81.0202.1111鐎规ɑ鏌熷锝呯础閻楋拷閺嗘挳顥撹ぐ閬嶇叾2021V5.81.0202.1111鐎规ɑ鏌熷锝呯础閻楋拷
韫囶偅鎸�5.0濮橀晲绗夐崡鍥╅獓閻楋拷5.0.80 妤犮劌銇旈悧锟�韫囶偅鎸�5.0濮橀晲绗夐崡鍥╅獓閻楋拷5.0.80 妤犮劌銇旈悧锟�
娴兼﹢鍙�2022鐎广垺鍩涚粩鐤�8.0.9.11050 鐎规ɑ鏌熼張鈧弬鎵娴兼﹢鍙�2022鐎广垺鍩涚粩鐤�8.0.9.11050 鐎规ɑ鏌熼張鈧弬鎵
閻栧崬顨岄懝楦款潒妫版叆13.1.5鐎规ɑ鏌熺€瑰宕滈悧锟�閻栧崬顨岄懝楦款潒妫版叆13.1.5鐎规ɑ鏌熺€瑰宕滈悧锟�
閸ユ儳鑸伴崶鎯у剼
photoshop cs6 娑擃厽鏋冮悧锟�13.1.2.3 閸忓秷鍨傛稉顓熸瀮閻楋拷photoshop cs6 娑擃厽鏋冮悧锟�13.1.2.3 閸忓秷鍨傛稉顓熸瀮閻楋拷
Autodesk 3ds Max 2012鐎规ɑ鏌熺粻鈧担鎾茶厬閺傚洨澧梉32&64]Autodesk 3ds Max 2012鐎规ɑ鏌熺粻鈧担鎾茶厬閺傚洨澧梉32&64]
CAD2007閸忓秷鍨傛稉顓熸瀮閻楋拷CAD2007閸忓秷鍨傛稉顓熸瀮閻楋拷
vc鏉╂劘顢戞惔锟�2019閺堚偓閺傛壆澧梫2019.3.2(32&64娴o拷)vc鏉╂劘顢戞惔锟�2019閺堚偓閺傛壆澧梫2019.3.2(32&64娴o拷)
.NET Framework 4.8鐎规ɑ鏌熼悧锟�4.8.3646.NET Framework 4.8鐎规ɑ鏌熼悧锟�4.8.3646
閼卞﹤銇夐懕鏃傜捕
QQ2022v9.5.6.28129 鐎规ɑ鏌熼張鈧弬鎵QQ2022v9.5.6.28129 鐎规ɑ鏌熼張鈧弬鎵
瀵邦喕淇婇悽浣冨壋閻楋拷2022v3.5.0.44 鐎规ɑ鏌熷锝呯础閻楋拷瀵邦喕淇婇悽浣冨壋閻楋拷2022v3.5.0.44 鐎规ɑ鏌熷锝呯础閻楋拷
閸楀啰澧伴崡鏍ь啀瀹搞儰缍旈獮鍐插酱v9.02.02N 鐎规ɑ鏌熼悧锟�閸楀啰澧伴崡鏍ь啀瀹搞儰缍旈獮鍐插酱v9.02.02N 鐎规ɑ鏌熼悧锟�
QT鐠囶參鐓禫4.6.80.18262鐎规ɑ鏌熼張鈧弬鎵QT鐠囶參鐓禫4.6.80.18262鐎规ɑ鏌熼張鈧弬鎵
妞嬬偘淇�2018V6.2.0700 鐎规ɑ鏌熷锝呯础閻楋拷妞嬬偘淇�2018V6.2.0700 鐎规ɑ鏌熷锝呯础閻楋拷
閻㈢喐妞块張宥呭
閺€顖欑帛鐎规繈鎸堕崠锟�(Alipay)V10.2.53.7000 鐎瑰宕滈悧锟�閺€顖欑帛鐎规繈鎸堕崠锟�(Alipay)V10.2.53.7000 鐎瑰宕滈悧锟�
閻ф儳瀹抽崷鏉挎禈鐎佃壈鍩�2022V15.12.10 鐎瑰宕滈幍瀣簚閻楋拷閻ф儳瀹抽崷鏉挎禈鐎佃壈鍩�2022V15.12.10 鐎瑰宕滈幍瀣簚閻楋拷
閹靛婧€濞fê鐤傜€广垺鍩涚粩鐥�10.8.40鐎规ɑ鏌熼張鈧弬鎵閹靛婧€濞fê鐤傜€广垺鍩涚粩鐥�10.8.40鐎规ɑ鏌熼張鈧弬鎵
閻e懘鈧梻缍夐幍瀣簚鐎广垺鍩涚粩鐥�5.6.9 鐎规ɑ鏌熼張鈧弬鎵閻e懘鈧梻缍夐幍瀣簚鐎广垺鍩涚粩鐥�5.6.9 鐎规ɑ鏌熼張鈧弬鎵
閸楀啳浜伴惌銉ㄧ槕閺堝秴濮焌ppv4.5.1鐎规ɑ鏌熼悧锟�閸楀啳浜伴惌銉ㄧ槕閺堝秴濮焌ppv4.5.1鐎规ɑ鏌熼悧锟�
瑜伴亶鐓堕幘顓熸杹
p2psearcher鐎瑰宕滈悧锟�7.3  閹靛婧€閻楋拷p2psearcher鐎瑰宕滈悧锟�7.3 閹靛婧€閻楋拷
闁伴瀚嶉棅鍏呯2022鐎规ɑ鏌熼悧鍦�11.0.8 鐎规ɑ鏌熺€瑰宕滈悧锟�闁伴瀚嶉棅鍏呯2022鐎规ɑ鏌熼悧鍦�11.0.8 鐎规ɑ鏌熺€瑰宕滈悧锟�
閻栧崬顨岄懝鐑樺閺堣櫣澧梫13.1.0閻栧崬顨岄懝鐑樺閺堣櫣澧梫13.1.0
閻ф儳瀹宠ぐ閬嶇叾7.13.0 鐎规ɑ鏌熼張鈧弬鎵閻ф儳瀹宠ぐ閬嶇叾7.13.0 鐎规ɑ鏌熼張鈧弬鎵
瑜伴亶鐓堕崗鍫ユ敱v6.9.0 鐎瑰宕滈幍瀣簚閻楋拷瑜伴亶鐓堕崗鍫ユ敱v6.9.0 鐎瑰宕滈幍瀣簚閻楋拷
闂冨懓顕板銉ュ徔
閼垫崘顔嗛崝銊︽瀬V9.11.5 鐎瑰宕滈悧锟�閼垫崘顔嗛崝銊︽瀬V9.11.5 鐎瑰宕滈悧锟�
娑旓附妫楃亸蹇氼嚛閸忓秷鍨傞悧鍫熸拱v11.5.5.153 鐎规ɑ鏌熼張鈧弬鎵娑旓附妫楃亸蹇氼嚛閸忓秷鍨傞悧鍫熸拱v11.5.5.153 鐎规ɑ鏌熼張鈧弬鎵
QQ闂冨懓顕伴崳鈺漰pV7.7.1.910 鐎规ɑ鏌熼張鈧弬鎵QQ闂冨懓顕伴崳鈺漰pV7.7.1.910 鐎规ɑ鏌熼張鈧弬鎵
閹虫帊姹夐悾鍛儔閸氼兛鍔焌ppv7.1.5 鐎规ɑ鏌熺€瑰宕滈悧锟�閹虫帊姹夐悾鍛儔閸氼兛鍔焌ppv7.1.5 鐎规ɑ鏌熺€瑰宕滈悧锟�
鐠ч鍋g拠璁冲姛app閺傛壆澧楅張锟�20227.9.186 鐎瑰宕滈悧锟�鐠ч鍋g拠璁冲姛app閺傛壆澧楅張锟�20227.9.186 鐎瑰宕滈悧锟�
闁叉垼鐎洪悶鍡氬偍
楠炲啿鐣ㄧ拠浣稿煖鐎瑰…閻炲棜鍌╒9.1.0.1 鐎规ɑ鏌熺€瑰宕滈悧锟�楠炲啿鐣ㄧ拠浣稿煖鐎瑰…閻炲棜鍌╒9.1.0.1 鐎规ɑ鏌熺€瑰宕滈悧锟�
濞寸兘鈧俺鐦夐崚鍛婂閺堣櫣澧�(e濞寸兘鈧俺鍌�)8.71 鐎规ɑ鏌熺€瑰宕滈悧锟�濞寸兘鈧俺鐦夐崚鍛婂閺堣櫣澧�(e濞寸兘鈧俺鍌�)8.71 鐎规ɑ鏌熺€瑰宕滈悧锟�
娑撴粍鎹g拠浣稿煖娑撴粍鎹i悶鍡氬偍4.0.5 鐎瑰宕滈悧锟�娑撴粍鎹g拠浣稿煖娑撴粍鎹i悶鍡氬偍4.0.5 鐎瑰宕滈悧锟�
娑擃參鎽辩拠浣稿煖缁夎濮╅悶鍡氬偍鏉烆垯娆�6.02.010 鐎规ɑ鏌熺€瑰宕滈悧锟�娑擃參鎽辩拠浣稿煖缁夎濮╅悶鍡氬偍鏉烆垯娆�6.02.010 鐎规ɑ鏌熺€瑰宕滈悧锟�
閸楀酣绶崇拠浣稿煖鐏忓繘鍣鹃幍瀣簚閻炲棜鍌ㄦ潪顖欐3.2.4 鐎瑰宕滈悧锟�閸楀酣绶崇拠浣稿煖鐏忓繘鍣鹃幍瀣簚閻炲棜鍌ㄦ潪顖欐3.2.4 鐎瑰宕滈悧锟�
閹靛婧€闁炬儼顢�
缁傚繐缂撻崘婊勬綑娣囷紕鏁ょ粈鐐閺堟椽鎽辩悰灞筋吂閹撮顏�2.3.4 鐎瑰宕滈悧锟�缁傚繐缂撻崘婊勬綑娣囷紕鏁ょ粈鐐閺堟椽鎽辩悰灞筋吂閹撮顏�2.3.4 鐎瑰宕滈悧锟�
閺勬挸鍩楁担婊嗩潒妫版垵澹€鏉堟叧pp4.1.16鐎瑰宕滈悧锟�閺勬挸鍩楁担婊嗩潒妫版垵澹€鏉堟叧pp4.1.16鐎瑰宕滈悧锟�
閺€顖欑帛鐎规繈鎸堕崠锟�(Alipay)V10.2.53.7000 鐎瑰宕滈悧锟�閺€顖欑帛鐎规繈鎸堕崠锟�(Alipay)V10.2.53.7000 鐎瑰宕滈悧锟�
娑擃厼娴楀銉ユ櫌闁炬儼顢戦幍瀣簚闁炬儼顢慳ppV7.0.1.2.5 鐎瑰宕滈悧锟�娑擃厼娴楀銉ユ櫌闁炬儼顢戦幍瀣簚闁炬儼顢慳ppV7.0.1.2.5 鐎瑰宕滈悧锟�
娑擃厼娴楅柧鎯邦攽閹靛婧€闁炬儼顢戠€广垺鍩涚粩锟�7.2.5 鐎规ɑ鏌熺€瑰宕滈悧锟�娑擃厼娴楅柧鎯邦攽閹靛婧€闁炬儼顢戠€广垺鍩涚粩锟�7.2.5 鐎规ɑ鏌熺€瑰宕滈悧锟�
娴兼垿妫介惄濠冩
閼垫崘顔嗛悮搴ㄥ鏉堝彞姹夐幍瀣簚閻楀湸2.3.0.0 鐎规ɑ鏌熺€瑰宕滈悧锟�閼垫崘顔嗛悮搴ㄥ鏉堝彞姹夐幍瀣簚閻楀湸2.3.0.0 鐎规ɑ鏌熺€瑰宕滈悧锟�
閸旇尪鍨堕崶銏犵暭閺傝顒滈悧鍫熷濞撶1.2.1鐎规ɑ鏌熼悧锟�閸旇尪鍨堕崶銏犵暭閺傝顒滈悧鍫熷濞撶1.2.1鐎规ɑ鏌熼悧锟�
妤椼儵銈挎ご銊╁鏉╂稑瀵查弮鐘绘闁借崵鐓堕悧鍧�7.8.0.0鐎瑰宕滈悧锟�妤椼儵銈挎ご銊╁鏉╂稑瀵查弮鐘绘闁借崵鐓堕悧鍧�7.8.0.0鐎瑰宕滈悧锟�
濡炲秶澧挎径褎鍨崓闈涙閸忋劍妲戦弰锟�1.0.91 鐎瑰宕滈悧锟�濡炲秶澧挎径褎鍨崓闈涙閸忋劍妲戦弰锟�1.0.91 鐎瑰宕滈悧锟�
閸斻劋缍旂亸鍕毊
閸﹂绗呴崺搴g崐閸戞槒鈧崑t閻楋拷1.6.3 鐎规ɑ鏌熼悧锟�閸﹂绗呴崺搴g崐閸戞槒鈧崑t閻楋拷1.6.3 鐎规ɑ鏌熼悧锟�
鐟佸懐鏁抽懕鏃傛礃1.325.157 鐎瑰宕滈悧锟�鐟佸懐鏁抽懕鏃傛礃1.325.157 鐎瑰宕滈悧锟�
閸︼絾鏋熸竟顐fЕ閻垽娉︾紒鎼�4.2.1 鐎瑰宕滈悧锟�閸︼絾鏋熸竟顐fЕ閻垽娉︾紒鎼�4.2.1 鐎瑰宕滈悧锟�
闁喖銇�3D閹靛鐖�1.0.9鐎瑰宕滈悧锟�闁喖銇�3D閹靛鐖�1.0.9鐎瑰宕滈悧锟�
婵夋棃妲诲〒鍛婂灆
鐎瑰宕滃宥囧⒖婢堆勫灛閸嶉潧妗�2姒涙垶娈弮鏈靛敩娣囶喗鏁奸悧鍦�1.9.5 閺堚偓閺傛壆澧�鐎瑰宕滃宥囧⒖婢堆勫灛閸嶉潧妗�2姒涙垶娈弮鏈靛敩娣囶喗鏁奸悧鍦�1.9.5 閺堚偓閺傛壆澧�
娑旇鲸鏋熺憲鎸庣埗2v1.0.150鐎瑰宕滈悧锟�娑旇鲸鏋熺憲鎸庣埗2v1.0.150鐎瑰宕滈悧锟�
娣囨繂宕奸拃婵嗗椽3閺冪娀妾洪柦鑽ょ叾閺堚偓閺傛壆澧梫2.0.0.1 鐎瑰宕滈悧锟�娣囨繂宕奸拃婵嗗椽3閺冪娀妾洪柦鑽ょ叾閺堚偓閺傛壆澧梫2.0.0.1 鐎瑰宕滈悧锟�
閸欙綀顣伴懟閬嶆碂閸楁洘婧€閻楋拷1.2.0 鐎瑰宕滈悧锟�閸欙綀顣伴懟閬嶆碂閸楁洘婧€閻楋拷1.2.0 鐎瑰宕滈悧锟�
鐏忓繐鐨崘娑樻礋鐎瑰宕滈悧锟�2.7.4 閺冪娀妾洪柌鎴濈娣囶喗鏁奸悧锟�鐏忓繐鐨崘娑樻礋鐎瑰宕滈悧锟�2.7.4 閺冪娀妾洪柌鎴濈娣囶喗鏁奸悧锟�
鐠ф稖婧呯粩鐐村Η
閻ц鍖楃挧娑滄簠2閹靛鐖�1.47.1  鐎瑰宕滈悧锟�閻ц鍖楃挧娑滄簠2閹靛鐖�1.47.1 鐎瑰宕滈悧锟�
娑撯偓鐠ч攱娼垫鐐舵簠鐎瑰宕滈悧鍧�2.9.14 閺堚偓閺傛壆澧�娑撯偓鐠ч攱娼垫鐐舵簠鐎瑰宕滈悧鍧�2.9.14 閺堚偓閺傛壆澧�
鐠烘垼绐囬崡鈥茬鏉烇附澧滈張铏瑰鐎规ɑ鏌熼張鈧弬鎵v1.16.2 鐎瑰宕滈悧锟�鐠烘垼绐囬崡鈥茬鏉烇附澧滈張铏瑰鐎规ɑ鏌熼張鈧弬鎵v1.16.2 鐎瑰宕滈悧锟�
閻欏倿鍣规娆掓簠8閺嬩線鈧喎鍣锋禍鎴滄叏閺€鍦(閸忓秵鏆熼幑顔煎瘶)v4.6.0j 闁叉垵绔甸弮鐘绘閻楋拷閻欏倿鍣规娆掓簠8閺嬩線鈧喎鍣锋禍鎴滄叏閺€鍦(閸忓秵鏆熼幑顔煎瘶)v4.6.0j 闁叉垵绔甸弮鐘绘閻楋拷
閻у彞绠伴崡鍐仏閹规洟濂�2021閺堚偓閺傛壆澧�5.78 鐎瑰宕滈悧锟�閻у彞绠伴崡鍐仏閹规洟濂�2021閺堚偓閺傛壆澧�5.78 鐎瑰宕滈悧锟�
鐟欐帟澹婇幍顔界川
濮婏箑澶熼崜鎴e灦閼板懎褰夐幀浣哄1.0.1.2鐎瑰宕滈悧锟�濮婏箑澶熼崜鎴e灦閼板懎褰夐幀浣哄1.0.1.2鐎瑰宕滈悧锟�
娴犳瑥顣ㄦ导鐘侯嚛ro婢跺秴鍙寸€瑰宕滈悧锟�1.20.3閺堚偓閺傛壆澧�娴犳瑥顣ㄦ导鐘侯嚛ro婢跺秴鍙寸€瑰宕滈悧锟�1.20.3閺堚偓閺傛壆澧�
濮婏箑澶熺拠娑楃舶閹靛鐖堕悧锟�1.3.6 鐎规ɑ鏌熺€瑰宕滈悧锟�濮婏箑澶熺拠娑楃舶閹靛鐖堕悧锟�1.3.6 鐎规ɑ鏌熺€瑰宕滈悧锟�
閻滃鈧懓宕抽懓鈧琕3.72.1.1 鐎瑰宕滈張鈧弬鏉跨暭閺傚湱澧�閻滃鈧懓宕抽懓鈧琕3.72.1.1 鐎瑰宕滈張鈧弬鏉跨暭閺傚湱澧�
鐠嬩礁顔嶇亸蹇氭簠瀵儤澧滈張铏瑰v1.0.49 鐎瑰宕滈悧锟�鐠嬩礁顔嶇亸蹇氭簠瀵儤澧滈張铏瑰v1.0.49 鐎瑰宕滈悧锟�
缁崵绮烘潪顖欐
mac绾句胶娲忛崚鍡楀隘瀹搞儱鍙�(Paragon Camptune X)V10.8.12鐎规ɑ鏌熼張鈧弬鎵mac绾句胶娲忛崚鍡楀隘瀹搞儱鍙�(Paragon Camptune X)V10.8.12鐎规ɑ鏌熼張鈧弬鎵
閼昏鐏夐幙宥勭稊缁崵绮篗ACOSX 10.9.4 Mavericks鐎瑰苯鍙忛崗宥堝瀭閻楋拷閼昏鐏夐幙宥勭稊缁崵绮篗ACOSX 10.9.4 Mavericks鐎瑰苯鍙忛崗宥堝瀭閻楋拷
Rar鐟欙絽甯囬崚鈺佹珤mac閻楀澊1.4 鐎规ɑ鏌熼崗宥堝瀭閻楋拷Rar鐟欙絽甯囬崚鈺佹珤mac閻楀澊1.4 鐎规ɑ鏌熼崗宥堝瀭閻楋拷
Mac鐎瑰宕滃Ο鈩冨珯閸o拷(ARC Welder)v1.0 鐎规ɑ鏌熼張鈧弬鎵Mac鐎瑰宕滃Ο鈩冨珯閸o拷(ARC Welder)v1.0 鐎规ɑ鏌熼張鈧弬鎵
Charles for MacV3.9.3鐎规ɑ鏌熼悧锟�Charles for MacV3.9.3鐎规ɑ鏌熼悧锟�
缂冩垹绮跺銉ュ徔
閹兼粎瀚嶅ù蹇氼潔閸b暕ac閻楀澊5.2 鐎规ɑ鏌熷锝呯础閻楋拷閹兼粎瀚嶅ù蹇氼潔閸b暕ac閻楀澊5.2 鐎规ɑ鏌熷锝呯础閻楋拷
闁挎劖宓庣€广垺鍩涚粩鐥琣c閻楀湸1.33鐎规ɑ鏌熼張鈧弬鎵闁挎劖宓庣€广垺鍩涚粩鐥琣c閻楀湸1.33鐎规ɑ鏌熼張鈧弬鎵
韫囶偆澧甿ac閻楀澊1.3.2 鐎规ɑ鏌熷锝呯础閻楋拷韫囶偆澧甿ac閻楀澊1.3.2 鐎规ɑ鏌熷锝呯础閻楋拷
閺嬩胶鍋f禍鏃傜應Mac閻楋拷7.13濮濓絽绱¢悧锟�閺嬩胶鍋f禍鏃傜應Mac閻楋拷7.13濮濓絽绱¢悧锟�
婵帊缍嬪銉ュ徔
Apple Logic Pro xV10.3.2Apple Logic Pro xV10.3.2
Adobe Premiere Pro CC 2017 mac閻楀澊11.0.0 娑擃厽鏋冮悧锟�Adobe Premiere Pro CC 2017 mac閻楀澊11.0.0 娑擃厽鏋冮悧锟�
閸楀啫宕堥棃娆忔儔Mac閻楀湸9.1.1 鐎规ɑ鏌熼張鈧弬鎵閸楀啫宕堥棃娆忔儔Mac閻楀湸9.1.1 鐎规ɑ鏌熼張鈧弬鎵
Mac缂冩垹绮堕惄瀛樻尡鏉烆垯娆�(MacTV)v0.121 鐎规ɑ鏌熼張鈧弬鎵Mac缂冩垹绮堕惄瀛樻尡鏉烆垯娆�(MacTV)v0.121 鐎规ɑ鏌熼張鈧弬鎵
Adobe Fireworks CS6 Mac閻楀湑S6鐎规ɑ鏌熺粻鈧担鎾茶厬閺傚洨澧�Adobe Fireworks CS6 Mac閻楀湑S6鐎规ɑ鏌熺粻鈧担鎾茶厬閺傚洨澧�
閸ユ儳鑸伴崶鎯у剼
AutoCAD2015 mac娑擃厽鏋冮悧鍫熸拱v1.0 鐎规ɑ鏌熷锝呯础閻楋拷AutoCAD2015 mac娑擃厽鏋冮悧鍫熸拱v1.0 鐎规ɑ鏌熷锝呯础閻楋拷
Adobe Photoshop cs6 mac閻楀澊13.0.3 鐎规ɑ鏌熸稉顓熸瀮閻楋拷Adobe Photoshop cs6 mac閻楀澊13.0.3 鐎规ɑ鏌熸稉顓熸瀮閻楋拷
Mac閻垽鍣虹紒妯烘禈鏉烆垯娆�(Sketch mac)v3.3.2 娑擃厽鏋冮悧锟�Mac閻垽鍣虹紒妯烘禈鏉烆垯娆�(Sketch mac)v3.3.2 娑擃厽鏋冮悧锟�
Adobe After Effects cs6 mac閻楀澊1.0娑擃厽鏋冮悧锟�Adobe After Effects cs6 mac閻楀澊1.0娑擃厽鏋冮悧锟�
Adobe InDesign cs6 mac1.0 鐎规ɑ鏌熸稉顓熸瀮閻楋拷Adobe InDesign cs6 mac1.0 鐎规ɑ鏌熸稉顓熸瀮閻楋拷
鎼存梻鏁ゆ潪顖欐
Mac閻楀牆鎻╅幘锟�1.1.26 鐎规ɑ鏌熷锝呯础閻楀溂dmg]Mac閻楀牆鎻╅幘锟�1.1.26 鐎规ɑ鏌熷锝呯础閻楀溂dmg]
Mac鐠囪鍟揘TFS(Paragon NTFS for Mac)12.1.62 鐎规ɑ鏌熷锝呯础閻楋拷Mac鐠囪鍟揘TFS(Paragon NTFS for Mac)12.1.62 鐎规ɑ鏌熷锝呯础閻楋拷
鏉╁懘娴�10 for macv3.4.1.4368 鐎规ɑ鏌熼張鈧弬鎵鏉╁懘娴�10 for macv3.4.1.4368 鐎规ɑ鏌熼張鈧弬鎵
Mac娑撳娓跺鍝勩亣閻ㄥ嫮閮寸紒鐔哥閻炲棗浼愰崗锟�(CleanMyMac for mac)v3.1.1 濮濓絽绱¢悧锟�Mac娑撳娓跺鍝勩亣閻ㄥ嫮閮寸紒鐔哥閻炲棗浼愰崗锟�(CleanMyMac for mac)v3.1.1 濮濓絽绱¢悧锟�
閼昏鐏塀ootCamp5.1.5640 鐎规ɑ鏌熼張鈧弬鎵閼昏鐏塀ootCamp5.1.5640 鐎规ɑ鏌熼張鈧弬鎵
ios缁€鍙ユ唉閼卞﹤銇�
瀵邦喕淇奿pad閻楋拷2020v7.0.12 鐎规ɑ鏌熼悧锟�瀵邦喕淇奿pad閻楋拷2020v7.0.12 鐎规ɑ鏌熼悧锟�
iphone閹靛婧€qq2021v8.5.0 鐎规ɑ鏌熼悧锟�iphone閹靛婧€qq2021v8.5.0 鐎规ɑ鏌熼悧锟�
閺勬挷淇奿OS閻楀澊7.3.13 iPhone閻楋拷閺勬挷淇奿OS閻楀澊7.3.13 iPhone閻楋拷
闂勫矂妾� iphoneV8.32.4 鐎规ɑ鏌熷锝呯础閻楋拷闂勫矂妾� iphoneV8.32.4 鐎规ɑ鏌熷锝呯础閻楋拷
閸楀啰澧� iphone閻楋拷9.2.5 鐎规ɑ鏌熼悧锟�閸楀啰澧� iphone閻楋拷9.2.5 鐎规ɑ鏌熼悧锟�
ios閻㈢喐妞块張宥呭
99娑撱儵鈧娓堕弬鎵V1.3.699娑撱儵鈧娓堕弬鎵V1.3.6
韫囶偆澧甶Phone閻楋拷5.7.3 鐎规ɑ鏌熼悧锟�韫囶偆澧甶Phone閻楋拷5.7.3 鐎规ɑ鏌熼悧锟�
濞fê鐤� for iPhonev9.5.15 鐎规ɑ鏌熼張鈧弬鎵濞fê鐤� for iPhonev9.5.15 鐎规ɑ鏌熼張鈧弬鎵
婢с劏鎶楁径鈺傜毜 for iphoneV7.5.3鐎规ɑ鏌熼張鈧弬鎵IPA婢с劏鎶楁径鈺傜毜 for iphoneV7.5.3鐎规ɑ鏌熼張鈧弬鎵IPA
鐠嬮攱鐡曢崷鏉挎禈iphone(Google Maps)4.54  娑擃厽鏋冮悧锟�鐠嬮攱鐡曢崷鏉挎禈iphone(Google Maps)4.54 娑擃厽鏋冮悧锟�
ios瑜伴亶鐓舵繛鍙樼
韫囶偅鎸遍懟瑙勭亯閻楀湸3.3.35 鐎规ɑ鏌熼悧鍦糹pa]韫囶偅鎸遍懟瑙勭亯閻楀湸3.3.35 鐎规ɑ鏌熼悧鍦糹pa]
閸氬鎮忚ぐ閬嶇叾閹绢厽鏂侀崳鈺s閻楋拷1.0.1017 閼昏鐏塱pad閻楋拷閸氬鎮忚ぐ閬嶇叾閹绢厽鏂侀崳鈺s閻楋拷1.0.1017 閼昏鐏塱pad閻楋拷
瑜伴亶鐓堕崗鍫ユ敱閹绢厽鏂侀崳鈺s閻楋拷2.8.0 鐎规ɑ鏌熼悧锟�瑜伴亶鐓堕崗鍫ユ敱閹绢厽鏂侀崳鈺s閻楋拷2.8.0 鐎规ɑ鏌熼悧锟�
閺傛濂旈惄瀛樻尡鐎广垺鍩涚粩鐥爋s閻楋拷7.0.1 鐎规ɑ鏌熼張鈧弬鎵閺傛濂旈惄瀛樻尡鐎广垺鍩涚粩鐥爋s閻楋拷7.0.1 鐎规ɑ鏌熼張鈧弬鎵
闁伴瀚嶉棅鍏呯 for iPhonev10.9.0 鐎规ɑ鏌熼張鈧弬鎵闁伴瀚嶉棅鍏呯 for iPhonev10.9.0 鐎规ɑ鏌熼張鈧弬鎵
ios閸ユ儳鑸伴崶鎯у剼
How old do I look ios閻楋拷1.02 鐎规ɑ鏌熼悧锟�How old do I look ios閻楋拷1.02 鐎规ɑ鏌熼悧锟�
缂囧骸娴樼粔鈧粔鈧琲Phone閻楀湸8.6.62 閺堚偓閺傜増顒滃蹇曞缂囧骸娴樼粔鈧粔鈧琲Phone閻楀湸8.6.62 閺堚偓閺傜増顒滃蹇曞
濮樻潙宓冮梼鐔兼毐閼昏鐏夐悧鍧�1.0.0濮樻潙宓冮梼鐔兼毐閼昏鐏夐悧鍧�1.0.0
婢垛晛銇塸閸ョ穭pad閻楋拷5.7.4 鐎规ɑ鏌熼悧锟�婢垛晛銇塸閸ョ穭pad閻楋拷5.7.4 鐎规ɑ鏌熼悧锟�
韫囶偅澧渋os閻楀湸9.6.30 鐎规ɑ鏌熼悧锟�韫囶偅澧渋os閻楀湸9.6.30 鐎规ɑ鏌熼悧锟�
ios濞村繗顫嶅銉ュ徔
閼冲苯瀵橀崷鏉挎禈ios閻楋拷1.0 鐎规ɑ鏌熼張鈧弬鎵閼冲苯瀵橀崷鏉挎禈ios閻楋拷1.0 鐎规ɑ鏌熼張鈧弬鎵
閹靛婧€鐎瑰鍙忛崝鈺傚閼昏鐏夐悧鍧�1.0 鐎规ɑ鏌熼張鈧弬鎵閹靛婧€鐎瑰鍙忛崝鈺傚閼昏鐏夐悧鍧�1.0 鐎规ɑ鏌熼張鈧弬鎵
UC濞村繗顫嶉崳鈺�113.5.5.1555娑擃厽鏋冮悧锟�UC濞村繗顫嶉崳鈺�113.5.5.1555娑擃厽鏋冮悧锟�
360濞村繗顫嶉崳鈩塂 for iPadV4.1.3  濮濓絽绱¢悧锟�360濞村繗顫嶉崳鈩塂 for iPadV4.1.3 濮濓絽绱¢悧锟�
iPhone閹靛婧€QQ濞村繗顫嶉崳鈺�8.9.1 鐎规ɑ鏌熼悧锟�iPhone閹靛婧€QQ濞村繗顫嶉崳鈺�8.9.1 鐎规ɑ鏌熼悧锟�

首页编程开发其它知识 → Proteus仿真速度很慢的分析

Proteus仿真速度很慢的分析

相关文章发表评论 来源:本站整理时间:2010/9/23 15:33:29字体大小:A-A+

作者:佚名点击:1322次评论:0次标签: Proteus

  • 类型:行业软件大小:1.1M语言:中文 评分:6.5
  • 标签:
立即下载

这篇文章是我的个人实践经验:

很多朋友在做Proteus硬件仿真的时候可能都碰上了仿真速度慢的问题,在点击了开始仿真之后,CPU过载,速度极慢,无法正常进行仿真;Proteus在信息栏提示CPU被使用情况,可能高达90%到100%,并没有按照真实速度仿真,点击信息栏中的提示信息就弹出一个对话框,说是 Simulation is not running in real time due to excessive CPUload,鼠标点击提示,会展开一个消息框,下面就是消息框内的内容:

This message has been generated because the simulation has been unable to keep up with real time for more than 20 consecutive simulation frames. This does not affect the accuracy of the simulation in any way, but it will mean that the simulated system may respond much more slowly to interactive events(e.g. push buttons).
See Also:

How to make simulations run faster?

这里的说明中可以看到至少两个信息:第一,速度慢并不影响仿真精度;第二,我们可以点击最下方那句话打开另一个链接来加速仿真;那么,我们就继续按照提示来寻找答案。(也许我们的Proteus版本不同,这些链接打开顺序和方法可能不一样,我是用的是7.1的版本)点击 How to make simulations run faster?打开Proteus的帮助,进入一个英文界面,我把原文全部贴在这里,之后和你一起解读。

ADVANCED TOPICS


HOW TO MAKE INTERACTIVE SIMULATIONS RUN FASTER


Introduction


Although Proteus VSM is able to run many interactive simulations in real

time, it should be fairly obvious that this cannot be the case for all

circuits. For example, it is perfectly possible to draw a circuit that will

oscillate at 1GHz, but there is no way that this can be simulated in real

time on a computer that may not even execute one machine instruction in 1ns.

In this section, we will explain in a little more detail what determines the

complexity of a simulation and how you can optimize a circuit to maximize the

simulation speed.

Using Digital Resistor and Diode Models

First and foremost in this context, it is vital to understand the difference

between analogue and digital simulation within ProSPICE. This is because the

simulation of digital circuitry is two or three orders of magnitude (i.e. up

to 1000 times) faster than the simulation of analogue circuitry. It is for

this reason that ProSPICE contains a digital simulator at all - that by

representing the operation of digital components as an event driven process,

a great deal of unnecessary computation can be avoided.

For example, whilst a PC with 600MHz P3 processor can simulate around 2

million digital events per second, the same computer will only be able to

simulate a sine wave generator running up to about 2kHz before the CPU load

reaches 100%. Such a waveform will require about 60,000 analogue timepoints

to be computed per second, and each timepoint will require a convergent

solution of the circuit nodal equations to be established - a process vastly

more complex than processing a simple digital event.


For many components, it should be fairly intuitive as to whether analogue or

digital simulation will be required. For example, nearly all TTL and CMOS

parts are represented by digital models, whereas analogue ICs such as op-

amps, comparators and so forth are represented by analogue models. All

components which are represented by standard SPICE models require analogue

simulation.

However, a grey area arises for components which - though strictly analogue

in nature - can be represented by a digital model for some purposes. In

particular, diodes - and perhaps more surprisingly - resistors fall into this

category. This becomes highly relevant in the context of wire-or logic, pull

-up resistors, devices with open-collector outputs, and in diode-resistor

logic networks.


Example 1 - Wire-Or Logic

The following circuit section shows a typical wire-or logic network:



U1:A and U1:B have open-collector outputs and can only sink current. A logic

1 output level results in a high impedance condition. In terms of DSIM, this

means that the gate outputs drive either an SLO (strong low) or a FLT

(floating) logic state. Now if resistor R1 is modelled in the analogue

domain, PROSPICE must insert a digital to analogue interface object between

the logic gates and the resistor, and then an analogue to digital interface

object between the resistor and the input to U2:A. This will result in

wonderfully detailed simulation of the rise-fall waveforms at this node, and

the current flow through R1, but will also result in a great deal of

computation every time the output of U1:A or U1:B changes state.


All this can be avoided if R1 is modelled digitally. In this case, its

behaviour is to convert the SHI logic state of VCC to a WHI (weak high) logic

level. When either NAND gate pulls low, the SLO state overrides the WHI state

from the resistor and the net state is resolved to be logic low. But when

neither gate sinks current, the WHI state beats the FLT state and the net

rises to logic high. All this can be managed within the digital simulation

paradigm and no analogue simulation is required.


Therefore, pull up resistors of any kind should almost always be modelled

digitally.


Example 2 - Diode-Resistor Logic


Another case where seemingly analogue circuitry can be modelled in the

digital domain is diode-resistor networks of the sort shown below. These are

often found around keypad scanning circuitry where the diodes serve to

prevent short circuits between the row driving lines if more than more than

one key is depressed simultaneously.


As with the wire-or logic example, ProSPICE will quite happily model this in

the analogue domain but it will be computationally expensive. If a digital

resistor model is used as above, and a diode is seen as a device which will

pass only low logic level from cathode to anode and only a high logic level

from anode to cathode, then the whole network can once again be modelled

digitally.

Since keypad scanning routines tend to operate at some speed, and there are

often numerous diodes and resistors, this is a very important optimization to

be aware of.


How to Select the Digital Resistor Model


1.    Point at the resistor you wish to change and press CTRL-E.

2.    Click the Edit All Properties as Text checkbox.

3.    Change the PRIMITIVE property to read


       PRIMITIVE=DIGITAL,RESISTOR


If you are building a circuit from scratch, and know that you will want a

particular resistor to be modelled digitally, you can also achieve this by

picking the PULLUP or PULLDOWN models from the component library. This

devices already contains the PRIMITIVE property as above.


How to Select the Digital Diode Model


1.    Point at the diode you wish to change and press CTRL-E.


2.    Click the Edit All Properties as Text checkbox.


3.    Change the PRIMITIVE property to read


       PRIMITIVE=DIGITAL,DIODE


4.    Delete any MODEL property, as SPICE parameters have no meaning for the

digital diode model.


If you are building a circuit from scratch, and know that you will want a

particular diode to be modelled digitally, you can also achieve this by

picking the DIODE-DIGITAL device the component library. This device already

contains the PRIMITIVE property as above.

Optimizing Memory Accesses to External RAM and ROM

Many larger microprocessor designs make use of ROM, RAM or EEPROM memory

devices external to the microcontroller itself. These may store the program

code, or be used to supplement internal SRAM present within the CPU chip

itself. Given a correct address decoding circuit, and assuming that the

memory device is modelled, Proteus VSM will correctly simulate such designs

as drawn. When the CPU accesses external memory, the model will drive the

address, data and control lines appropriately, and external decode logic and

memory model will respond by reading or writing the appropriate locations.

This is quite useful if you wish to verify that your memory decoding

circuitry works as designed, but is also extremely expensive in terms of

computation. Setting up a 16 bit address will create a minimum of 16 digital

events and reading or writing a byte of data to/from data bus will generate

another 8. Removing the data from the bus afterwards will create another 8

events. Where address and data lines are multiplexed, as in the above HC11

design, even more events will be generated. All this compares very

unfavourably with the ability of a VSM CPU model to execute an instruction

using just one event per machine cycle.


Therefore, we have provided the CPU models with the ability to simulate

accesses to external memory internally to the model. At the time of writing

this applies to the 8051,

HC11 and the larger AVR CPU models. External memory may be declared using

EXTRAM, or EXTROM properties which specify the memory range for each block of

external memory. Full details are provided in the model specific help for

these processors, which you can access from the Edit Component dialogue form,

or from the Start Menu.


Once the external memory map has been defined in this way, instructions which

access external memory within the specified ranges can be simulated without

generating large numbers of digital events. Accesses to memory mapped

peripherals can still be fully simulated, since these will lie at locations

outside the memory ranges specified in the EXTRAM and EXTROM properties.

这里就列出了所有问题的根源了;各位朋友不妨多看看这里的英文帮助,磨刀不误砍柴

工,这里的帮助内容比任何人的经验之谈要高明得多;


好了,让我来读读这里的帮助,下面是我读出的基本内容之一:

第一:使用数字式的电阻和二极管(Using Digital Resistor and Diode Models)

这句话是我的翻译,原文的意思是如果把所有的二极管和电阻都看成是模拟量那样仿真的话,Proteus的速度会大大下降;所以所有的上拉电阻都可以看成是数字量的模拟(原文是:Therefore, pull up resistors of any kind should almost always bemodelled digitally.);而一些作为逻辑门电路用的二极管也可以看成数字式的;因此,需要对仿真的元件进行设置。

1)对电阻的设置(How to Select the Digital Resistor Model) How to Select the Digital Resistor Model


1.    Point at the resistor you wish to change and press CTRL-E.

2.    Click the Edit All Properties as Text checkbox.

3.    Change the PRIMITIVE property to read


       PRIMITIVE=DIGITAL,RESISTOR

2)对二极管的设置(How to Select the Digital Diode Model)

1.    Point at the diode you wish to change and press CTRL-E.

2.    Click the Edit All Properties as Text checkbox.

3.    Change the PRIMITIVE property to read

       PRIMITIVE=DIGITAL,DIODE

4.    Delete any MODEL property, as SPICE parameters have no meaning for thedigital diode model

       另外说明,在编辑Properties时,在文本框里键入的内容若用中括号{}括起来,那么在仿真界面就不会显示出来,比如

{MODFILE=74AND2.MDF}
{PACKAGE=DIL14}
{ITFMOD=TTL}

第二:Optimizing Memory Accesses to External RAM and ROM


这个问题我还没有遇到过,也不太明白其中的内容,希望比较熟悉单片机方面有的朋友做补充了!!!

相关评论

阅读本文后您有什么感想? 已有人给出评价!

  • 8 喜欢喜欢
  • 3 顶
  • 1 难过难过
  • 5 囧
  • 3 围观围观
  • 2 无聊无聊

热门评论

最新评论

第 1 楼 广东教育网 网友 客人 发表于: 2011/3/10 17:17:16
前101个评论都是我的,我很奇怪为什么让一个人可以评论那么多次

支持( 0 ) 盖楼(回复)

发表评论 查看所有评论(0)

昵称:
表情: 高兴 可 汗 我不要 害羞 好 下下下 送花 屎 亲亲
字数: 0/500 (您的评论需要经过审核才能显示)