本合集包含了以映射,交并集和等差数列为知识点的高一数学教案
合集中的教案具体包括
1 映射
2 交集、并集
3 等拆数列的前n项和
教案举例
教学目标 (1)了解的概念,象与原象及一一的概念.
(2)在概念形成过程中,培养学生的观察,分析对比,归纳的能力.
(3)通过概念的学习,逐步提高学生的探究能力.
教学重点难点::概念的形成与认识.
教学用具:实物投影仪
教学方法:启发讨论式
教学过程:
一、引入
在初中,我们已经初步探讨了函数的定义并研究了几类简单的常见函数.在高中,将利用前面集合有关知识,利用的观点给出函数的定义.那么是什么呢?这就是我们今天要详细的概念.
二、新课
在前一章集合的初步知识中,我们学习了元素与集合及集合与集合之间的关系,而是重点研究两个集合的元素与元素之间的对应关系.这要先从我们熟悉的对应说起(用投影仪打出一些对应关系,共6个)
我们今天要研究的是一类特殊的对应,特殊在什么地方呢?
提问1:在这些对应中有哪些是让A中元素就对应B中唯一一个元素?
让学生仔细观察后由学生回答,对有争议的,或漏选,多选的可详细说明理由进行讨论.最后得出(1),(2),(5),(6)是符合条件的(用投影仪将这几个集中在一起)
提问2:能用自己的语言描述一下这几个对应的共性吗?
经过师生共同推敲,将的定义引出.(主体内容由学生完成,教师做必要的补充)
(板书)
一.
1.定义:一般地,设 两个集合,如果按照某种对应法则 ,对于集合 中的任何一个元素,在集合 中都有唯一的元素和它对应,那么这样的对应(包括集合 及 到 的对应法则)叫做集合 到集合 的,记作 .
定义给出之后,教师应及时强调是特殊的对应,故是三部分构成的一个整体,从的符号表示中也可看出这一点,它的特殊之处在于元素与元素之间的对应必须作到“任一对唯一”,同时指出具有对应关系的元素即 中元素 对应 中元素 ,则 叫 的象, 叫 的原象.
(板书)
2.象与原象
可以用前面的例子具体说明谁是谁的象,谁是谁的原象.
提问3:下面请同学根据自己对的理解举几个的例子,看对是否真正认识了.
(开始时只要是即可,之后可逐步提高要求,如集合是无限集,或生活中的例子等)由学生自己评判.之后教师再给出几个(主要是补充学生举例类型的不足)
(1),,,.
(2.
(3除以3的余数.
(4{高一1班同学},{入学是数学考试成绩},对自己的考试成绩.
在学生作出判断之后,引导学生发现的性质(教师适当提出研究方向由学生说,再由老师概括)