本合集包含了以正负数,数轴,相反数,绝对值为知识点的初中七年级数学教案
合集中的教案包括
1 初一数学(第三周)
2 有理数
3 初一数学(第四周)
教案举例
第二章:2·3相反数 2·4绝对值
【教学目标】
1、使学生能够理解相反数与绝对值的意义;
2、使学生能够掌握绝对值的性质;
3、使学生能够求出一个数的相反数和绝对值;
4、使学生能够利用绝对值比较两个负数的大小。
【知识讲解】
一、本讲主要知识点
1、相反数意义;
2、相反数的表示;
3、绝对值的意义;
4、绝对值的性质;
5、有理数大小比较法则。
其中求一个数的绝对值是本讲的重点,而利用绝对值进行两个负数的大小比较是难点。
下面我们概述一下这五个知识点的主要内容:
1、相反数的意义
对于3与-3这两个有理数,它们只有符号不同,一正一负,在数轴上表示这两个数的点(如图),分别在原点的两旁,且与原点的距离相等,都等于3。
像3与-3这样只有符号不同的两个数,我们说其中一个是另一个的相反数,即3的相反数是-3,-3的相反数是3。
由上面的图我们对相反数的意义也可以作如下理解:在数轴上表示两个数的点分别在原点的两旁并且与原点距离相等,满足这两个条件的两数称为互为相反数。零的相反数是零。
2、相反数的表示:如果a表示任意一个有理数,那么-a就是a的相反数。并规定+0=0,-0=0.
3、绝对值的意义:
我们知道,3与-3互为相反数,在数轴上表示这两个数的点,与原点的距离相等都等于3,这个距离3就是3与-3的绝对值。所以对一个数的绝对值意义可用如下理解:一个数a的绝对值就是数轴上表示数a的点与原点的距离。数a的绝对值记作|a|。如|3|=3,|-3|=3,|- |= ,| |= 等。
4、绝对值的性质
(1)一个正数的绝对值是它本身;(2)一个负数的绝对值是它的相反数;
(3)0的绝对值是0。
即|a|=
注意:
(1)由于|a|表示数轴上表示数a的点到原点的距离,故|a|是一个非负数,即|a|≥0;
(2)|a|=|-a|
5、有理数的大小比较法则
(1)正数大于零;(2)零大于一切负数;(3)正数大于负数;
(4)两个正数,绝对值大的数较大;(5)两个负数,绝对值大的反而小。
二、典型例题:
例1、填空题
(1)-5.7的相反数是 ;
(2)- 的是 的相反数;
(3) 与 互为相反数; 与 互为倒数;
(4)3的倒数的相反数是 。
分析:要正确区分相反数和倒数这两种不同的概念, 的倒数是 。而 的相反数是- 。相反数是成对出现的,称为互为相反数。
解:(1)5.7;(2) ;(3)- , ;(4)- 。
说明:要正确理解相反数的意义。“数轴上原点两旁的两个点的表示的数是相反数”及“符号不同的两个数互为相反数”这两种说法都是错误的。
例2、求出下列各数的相反数。
(1) ;(2)- ;(3)m-1;(4)4n2
分析:数a的相反数是-a,a可以是正数、负数、0。如- 的相反数是-(- ),即 。