小发猫AI智能写作是一款非常实用的AI写作软件,也是一款智能伪原创工具,可以智能提取关键词进行伪原创,可以大大降低文章重复率。小发猫AI智能写作软件综合对于多个搜索引擎数据后计算处理,为您的文章提供更优的排名支持。
关于小发猫
小发猫中文语义开放平台提供使用简单、功能强大、性能可靠的中文自然语言分析云服务。
互联网时代信息无处不在,我们日常所接触的大量信息例如微博、社交媒体网站的帖子、消费者点评、新闻、销售人员的拜访记录以及可以转换成文本的语音内容,这些都是常见的非结构化数据来源。
根据2011年IDC的调查,非结构化数据将占未来十年所创造数据的90%。作为一个尚未得到充分开发的信息源,非结构化数据分析可以揭示之前很难或无法确定的重要相互关系。
非结构化数据分析能够揭示潜藏在文本当中的趋势和关联,为商业决策、研究行业趋势和热点内容分析提供有力支持。
小发猫团队致力于打造最出色的中文语义分析技术,通过自主研发的中文分词、句法分析、语义联想和实体识别技术,结合海量行业语料的不断积累,为企业和广大开发者提供简单、强大、可靠的中文语义分析云端API。
软件特色
情感分析 Sentiment Analysis
情感分析指的是对文本中情感的倾向性和评价对象进行提取的过程。
小发猫NLP情感引擎提供行业领先的篇章级情感分析。基于上百万条社交网络平衡语料和数十万条新闻平衡语料的机器学习模型,结合自主开发的半监督学习技术,正负面情感分析准确度达到80%~85% 。经过行业数据标注学习后准确率可达85%~90%。
信息分类 Classification
文本信息分类将文本按照预设的分类体系进行自动区分。
小发猫提供定制的文本分类API服务,有着广泛的商业应用前景。
例如,通过社交网络挖掘商业情报和潜在销售机会,企业内文本数据分析,海量数据筛选,资讯分类和自动标签预测等。
基于小发猫自主研发的语义联想、句法分析等技术,通过半监督学习引擎的训练,只需要进行少量的代表性数据标注,就可以达到商用级别的预测准确率。
实体识别 Named Entity Recognition
实体识别用于从文本中发现有意义的信息,例如人名、公司名、产品名、时间、地点等。
实体识别是语义分析中的重要的基础,是情感分析、机器翻译、语义理解等任务中的重要步骤。
小发猫NLP实体识别引擎基于自主研发的结构化信息抽取算法,F1分数达到81%,相比于StanfordNER高出7个百分点。通过对行业语料的进一步学习,可以达到更高的准确率。
典型意见 Opinion Extraction
典型意见引擎将消费者意见进行单句级别的语义聚合,提取出有代表性的意见。可用于消费者调研、电商点评分析和社会热点事件的意见整理。 基于语义的分析引擎在准确率上有较大的突破,能将含义接近但表述不同的意见聚合在一起,并可通过参数调节聚类的大小获得更好的效果,与人工整理相比更加快速、准确 。
文本聚类 Clustering
相似文本聚类指的是机器自动对给定的文本进行话题聚类,将语义上相似的内容归为一类,有助于海量文档、资讯的整理,和话题级别的统计分析。 小发猫自主研发的文本聚类算法:
一方面加入了对语义的扩展,保证同一个意见的不同表述可以被归纳在一起。
另一方面又避免了传统的K-means等算法需要预先设定聚类总数的困难,基于数据的分布自动选择合适的阈值。
关键词提取 Keyword Extraction
关键词提取引擎从一篇或多篇文本中提取出有代表性的关键词。
小发猫的关键词提取技术综合考虑词语在文本中的频率,和词语在千万级背景数据中的频率,选择出最具有代表性的关键词并给出相应权重。