西西软件园多重安全检测下载网站、值得信赖的软件下载站!
软件
软件
文章
搜索

首页编程开发VC|VC++ → C++ 基本算法 冒泡法、交换法、选择法、(实现代码)大集合

C++ 基本算法 冒泡法、交换法、选择法、(实现代码)大集合

相关软件相关文章发表评论 来源:本站原创时间:2010/11/11 10:06:00字体大小:A-A+

作者:不详点击:1215次评论:0次标签: C++排序算法

迅雷7v7.9.44.5056 官方最新版
  • 类型:下载工具大小:40.0M语言:中文 评分:9.7
  • 标签:
立即下载

大家在学习C语言的时候,老师可能都会讲的几个算法。

 

1.冒泡法:


这是最原始,也是众所周知的最慢的算法了。
他的名字的由来因为它的工作看来象是冒泡:
#include <iostream.h> void BubbleSort(int* pData,int Count) { int iTemp; for(int i=1;i<Count;i++) { for(int j=Count-1;j>=i;j--) { if(pData[j]<pData[j-1]) { iTemp = pData[j-1]; pData[j-1] = pData[j]; pData[j] = iTemp; } } } } void main() { int data[] = {10,9,8,7,6,5,4}; BubbleSort(data,7); for (int i=0;i<7;i++) cout<<data<<" "; cout<<"\n"; } 倒序(最糟情况)
第一轮:10,9,8,7->10,9,7,8->10,7,9,8->7,10,9,8(交换3次)
第二轮:7,10,9,8->7,10,8,9->7,8,10,9(交换2次)
第一轮:7,8,10,9->7,8,9,10(交换1次)
循环次数:6次交换次数:6次
其他:第一轮:8,10,7,9->8,10,7,9->8,7,10,9->7,8,10,9(交换2次)
第二轮:7,8,10,9->7,8,10,9->7,8,10,9(交换0次)
第一轮:7,8,10,9->7,8,9,10(交换1次) 循环次数:6次交换次数:3次 上面我们给出了程序段,
现在我们分析它:这里,影响我们算法性能的主要部分是循环和交换,显然,次数越多,性能就越差。
从上面的程序我们可以看出循环的次数是固定的,为1+2+...+n-1。写成公式就是1/2*(n-1)*n。
现在注意,我们给出O方法的定义: 若存在一常量K和起点n0,使当n>=n0时,有f(n)<=K*g(n),则f(n) = O(g(n))。
现在我们来看1/2*(n-1)*n,当K=1/2,n0=1,g(n)=n*n时,1/2*(n-1)*n<=1/2*n*n=K*g(n)。所以f(n)=O(g(n))=O(n*n)。
所以我们程序循环的复杂度为O(n*n)。 再看交换。从程序后面所跟的表可以看到,两种情况的循环相同,交换不同。
其实交换本身同数据源的有序程度有极大的关系,当数据处于倒序的情况时,交换次数同循环一样(每次循环判断都会交换),复杂度为O(n*n)。
当数据为正序,将不会有交换。复杂度为O(0)。乱序时处于中间状态。正是由于这样的原因,我们通常都是通过循环次数来对比算法。


2.交换法:


交换法的程序最清晰简单,每次用当前的元素一一的同其后的元素比较并交换。
#include <iostream.h>
void ExchangeSort(int* pData,int Count)
{
int iTemp;
for(int i=0;i<Count-1;i++)
{
for(int j=i+1;j<Count;j++)
{
if(pData[j]<pData)
{
iTemp = pData;
pData = pData[j];
pData[j] = iTemp;
}
}
}
}

void main()
{
int data[] = {10,9,8,7,6,5,4};
ExchangeSort(data,7);
for (int i=0;i<7;i++)
cout<<data<<" ";
cout<<"\n";
}
倒序(最糟情况)
第一轮:10,9,8,7->9,10,8,7->8,10,9,7->7,10,9,8(交换3次)
第二轮:7,10,9,8->7,9,10,8->7,8,10,9(交换2次)
第一轮:7,8,10,9->7,8,9,10(交换1次)
循环次数:6次
交换次数:6次

其他:
第一轮:8,10,7,9->8,10,7,9->7,10,8,9->7,10,8,9(交换1次)
第二轮:7,10,8,9->7,8,10,9->7,8,10,9(交换1次)
第一轮:7,8,10,9->7,8,9,10(交换1次)
循环次数:6次
交换次数:3次

从运行的表格来看,交换几乎和冒泡一样糟。事实确实如此。循环次数和冒泡一样也是1/2*(n-1)*n,所以算法的复杂度仍然是O(n*n)。由于我们无法给出所有的情况,所以只能直接告诉大家他们在交换上面也是一样的糟糕(在某些情况下稍好,在某些情况下稍差)。p#副标题#e#


3.选择法:


现在我们终于可以看到一点希望:选择法,这种方法提高了一点性能(某些情况下)这种方法类似我们人为的排序习惯:从数据中选择最小的同第一个值交换,在从省下的部分中选择最小的与第二个交换,这样往复下去。
#include <iostream.h>
void SelectSort(int* pData,int Count)
{
int iTemp;
int iPos;
for(int i=0;i<Count-1;i++)
{
iTemp = pData;
iPos = i;
for(int j=i+1;j<Count;j++)
{
if(pData[j]<iTemp)
{
iTemp = pData[j];
iPos = j;
}
}
pData[iPos] = pData;
pData = iTemp;
}
}

void main()
{
int data[] = {10,9,8,7,6,5,4};
SelectSort(data,7);
for (int i=0;i<7;i++)
cout<<data<<" ";
cout<<"\n";
}


倒序(最糟情况)


第一轮:10,9,8,7->(iTemp=9)10,9,8,7->(iTemp=8)10,9,8,7->(iTemp=7)7,9,8,10(交换1次)
第二轮:7,9,8,10->7,9,8,10(iTemp=8)->(iTemp=8)7,8,9,10(交换1次)
第一轮:7,8,9,10->(iTemp=9)7,8,9,10(交换0次)
循环次数:6次
交换次数:2次


其他:


第一轮:8,10,7,9->(iTemp=8)8,10,7,9->(iTemp=7)8,10,7,9->(iTemp=7)7,10,8,9(交换1次)
第二轮:7,10,8,9->(iTemp=8)7,10,8,9->(iTemp=8)7,8,10,9(交换1次)
第一轮:7,8,10,9->(iTemp=9)7,8,9,10(交换1次)
循环次数:6次
交换次数:3次
遗憾的是算法需要的循环次数依然是1/2*(n-1)*n。所以算法复杂度为O(n*n)。
我们来看他的交换。由于每次外层循环只产生一次交换(只有一个最小值)。所以f(n)<=n
所以我们有f(n)=O(n)。所以,在数据较乱的时候,可以减少一定的交换次数。4.插入法:
插入法较为复杂,它的基本工作原理是抽出牌,在前面的牌中寻找相应的位置插入,然后继续下一张
#include <iostream.h>
void InsertSort(int* pData,int Count)
{
int iTemp;
int iPos;
for(int i=1;i<Count;i++)
{
iTemp = pData;
iPos = i-1;
while((iPos>=0) && (iTemp<pData[iPos]))
{
pData[iPos+1] = pData[iPos];
iPos--;
}
pData[iPos+1] = iTemp;
}
}


void main()
{
int data[] = {10,9,8,7,6,5,4};
InsertSort(data,7);
for (int i=0;i<7;i++)
cout<<data<<" ";
cout<<"\n";
}

倒序(最糟情况)
第一轮:10,9,8,7->9,10,8,7(交换1次)(循环1次)
第二轮:9,10,8,7->8,9,10,7(交换1次)(循环2次)
第一轮:8,9,10,7->7,8,9,10(交换1次)(循环3次)
循环次数:6次
交换次数:3次

其他:
第一轮:8,10,7,9->8,10,7,9(交换0次)(循环1次)
第二轮:8,10,7,9->7,8,10,9(交换1次)(循环2次)
第一轮:7,8,10,9->7,8,9,10(交换1次)(循环1次)
循环次数:4次
交换次数:2次

上面结尾的行为分析事实上造成了一种假象,让我们认为这种算法是简单算法中最好的,其实不是,因为其循环次数虽然并不固定,我们仍可以使用O方法。从上面的结果可以看出,循环的次数f(n)<=1/2*n*(n-1)<=1/2*n*n。所以其复杂度仍为O(n*n)(这里说明一下,其实如果不是为了展示这些简单排序的不同,交换次数仍然可以这样推导)。现在看交换,从外观上看,交换次数是O(n)(推导类似选择法),但我们每次要进行与内层循环相同次数的‘=’操作。正常的一次交换我们需要三次‘=’而这里显然多了一些,所以我们浪费了时间。最终,我个人认为,在简单排序算法中,选择法是最好的。插入排序
#include <iostream>
using namespace std;

void coutstream(int a[],int n){
for(int i=0;i!=n;i++)
cout<<a<<" ";
}

void insertsort(int a[],int n){
int temp;
for(int i=1;i<n;i++)
{
int j=i;
temp=a; //先把a位置的数据存起来
while(j>0&&temp<a[j-1])
{
a[j]=a[j-1];
j--;
}
a[j]=temp;
}
}


int main()
{
int a[5]={1,6,4,8,4};
insertsort(a,5);//插入排序
coutstream(a,5);//
return 0;
}


二、高级排序算法:


高级排序算法中我们将只介绍这一种,同时也是目前我所知道(我看过的资料中)的最快的。它的工作看起来仍然象一个二叉树。首先我们选择一个中间值middle程序中我们使用数组中间值,然后把比它小的放在左边,大的放在右边(具体的实现是从两边找,找到一对后交换)。然后对两边分别使用这个过程(最容易的方法——递归)。
1.快速排序:
#include <iostream.h>

void run(int* pData,int left,int right)
{
int i,j;
int middle,iTemp;
i = left;
j = right;
middle = pData[(left+right)/2]; //求中间值
do{
while((pData<middle) && (i<right))//从左扫描大于中值的数
i++;
while((pData[j]>middle) && (j>left))//从右扫描大于中值的数
j--;
if(i<=j)//找到了一对值
{
//交换
iTemp = pData;
pData = pData[j];
pData[j] = iTemp;
i++;
j--;
}
}while(i<=j);//如果两边扫描的下标交错,就停止(完成一次)

//当左边部分有值(left<j),递归左半边
if(left<j)
run(pData,left,j);
//当右边部分有值(right>i),递归右半边
if(right>i)
run(pData,i,right);
}

void QuickSort(int* pData,int Count)
{
run(pData,0,Count-1);
}

void main()
{
int data[] = {10,9,8,7,6,5,4};
QuickSort(data,7);
for (int i=0;i<7;i++)
cout<<data<<" ";
cout<<"\n";
}

这里我没有给出行为的分析,因为这个很简单,我们直接来分析算法:首先我们考虑最理想的情况
1.数组的大小是2的幂,这样分下去始终可以被2整除。假设为2的k次方,即k=log2(n)。
2.每次我们选择的值刚好是中间值,这样,数组才可以被等分。
第一层递归,循环n次,第二层循环2*(n/2)......
所以共有n+2(n/2)+4(n/4)+...+n*(n/n) = n+n+n+...+n=k*n=log2(n)*n
所以算法复杂度为O(log2(n)其他的情况只会比这种情况差,最差的情况是每次选择到的middle都是最小值或最大值,那么他将变成交换法(由于使用了递归,情况更糟)。但是你认为这种情况发生的几率有多大??呵呵,你完全不必担心这个问题。实践证明,大多数的情况,快速排序总是最好的。如果你担心这个问题,你可以使用堆排序,这是一种稳定的O(log2(n)*n)算法,但是通常情况下速度要慢于快速排序(因为要重组堆)

三、其他排序


1.双向冒泡:
通常的冒泡是单向的,而这里是双向的,也就是说还要进行反向的工作。
代码看起来复杂,仔细理一下就明白了,是一个来回震荡的方式。
写这段代码的作者认为这样可以在冒泡的基础上减少一些交换(我不这么认为,也许我错了)。
反正我认为这是一段有趣的代码,值得一看。
#include <iostream.h>
void Bubble2Sort(int* pData,int Count)
{
int iTemp;
int left = 1;
int right =Count -1;
int t;
do
{
//正向的部分
for(int i=right;i>=left;i--)
{
if(pData<pData[i-1])
{
iTemp = pData;
pData = pData[i-1];
pData[i-1] = iTemp;
t = i;
}
}
left = t+1;

//反向的部分
for(i=left;i<right+1;i++)
{
if(pData<pData[i-1])
{
iTemp = pData;
pData = pData[i-1];
pData[i-1] = iTemp;
t = i;
}
}
right = t-1;
}while(left<=right);
}

void main()
{
int data[] = {10,9,8,7,6,5,4};
Bubble2Sort(data,7);
for (int i=0;i<7;i++)
cout<<data<<" ";
cout<<"\n";
}

快速排序
#include <iostream>
using namespace std;
class QuickSort
{
public:
void quick_sort(int* x,int low,int high)
{
int pivotkey;
if(low <high)
{
pivotkey=partion(x,low,high);
quick_sort(x,low,pivotkey-1);
quick_sort(x,pivotkey+1,high);
}
}
int partion(int* x,int low,int high)
{
int pivotkey;
pivotkey=x[low];
while(low <high)
{
while (low <high&&x[high]>=pivotkey)
--high; //还有while循环只执行这一句
x[low]=x[high];
while (low <high&&x[low] <=pivotkey)
++low; //还有while循环只执行这一句
x[high]=x[low];
}
x[low]=pivotkey;
return low;
}
};
int main()
{
int x[10]={52,49,80,36,14,58,61,97,23,65};
QuickSort qs;
qs.quick_sort(x,0,9);
cout <<"排好序的数字序列为:" <<endl;
for (int i=0;i <10;i++)
{
printf("%d ",x);
}
return 0;
}

2.SHELL排序


这个排序非常复杂,看了程序就知道了。
首先需要一个递减的步长,这里我们使用的是9、5、3、1(最后的步长必须是1)。
工作原理是首先对相隔9-1个元素的所有内容排序,然后再使用同样的方法对相隔5-1个元素的排序以次类推。
#include <iostream.h>
void ShellSort(int* pData,int Count)
{
int step[4];
step[0] = 9;
step[1] = 5;
step[2] = 3;
step[3] = 1;

int iTemp;
int k,s,w;
for(int i=0;i<4;i++)
{
k = step;
s = -k;
for(int j=k;j<Count;j++)
{
iTemp = pData[j];
w = j-k;//求上step个元素的下标
if(s ==0)
{
s = -k;
s++;
pData[s] = iTemp;
}
while((iTemp<pData[w]) && (w>=0) && (w<=Count))
{
pData[w+k] = pData[w];
w = w-k;
}
pData[w+k] = iTemp;
}
}
}

void main()
{
int data[] = {10,9,8,7,6,5,4,3,2,1,-10,-1};
ShellSort(data,12);
for (int i=0;i<12;i++)
cout<<data<<" ";
cout<<"\n";
}
程序看起来有些头疼。不过也不是很难,把s==0的块去掉就轻松多了,这里是避免使用0步长造成程序异常而写的代码。这个代码很值得一看。这个算法的得名是因为其发明者的名字D.L.SHELL。依照参考资料上的说法:“由于复杂的数学原因避免使用2的幂次步长,它能降低算法效率。”另外算法的复杂度为n的1.2次幂。同样因为非常复杂并“超出本书讨论范围”的原因(我也不知道过程),我们只有结果。冒泡排序性能优化版#include <iostream>
using namespace std;
void maopao(int *list,int n)
{
int i=n,j,temp;
bool exchange;//当数据已经排好时,退出循环
for(i=0;i<n;i++)
{
exchange=false;
for (j=0;j<n-i-1;j++)
{
if (list[j]>list[j+1])
{
temp=list[j];
list[j]=list[j+1];
list[j+1]=temp;
exchange=true;
}

}
if (!exchange)
{
return;
}
}
}
int main()
{
int a[7]={32,43,22,52,2,10,30};
maopao(a,7);
for(int i=0;i<7;i++)
cout<<a<<" ";
return 0;
}

    迅雷离线
    (11)迅雷离线
    西西软件园提供好用的迅雷离线下载,开电脑根本下不完,离线的意思是说你关机走了,迅雷那边的服务器还在帮你下载,但不是下到你的电脑上,而是下在他自己的服务器上,等你再上自己电脑的时候就能用非常非常快的速度直接从他的服务器上把那个源下载下来了。迅雷离线下载可以浏览并将自己喜爱的内容保存到离线空间或者移动设备上,您可以使用视频加速功能在线播放或下载到本地播放,离线空间的片源,可以使用云点播功能直接播放,免...更多>>
    bt下载软件
    (21)bt下载软件
    西西软件园提供好用的下载软件免费下载,下载是目前非常流行的一种下载方式,一般我们下载文件或软件,大都由站点或站台下载,若同时间下载人数多时,基于该服务器频宽的因素,速度会减慢许多,而下载软件却恰巧相反,同时间下载的人数越多你下载的速度便越快,因为它采用了多点对多点的传输原理。...更多>>
    迅雷8
    (14)迅雷8
    迅雷.正式版发布,在旧版的基础上,迅雷优化了主界面,增加了一些自定义皮肤。大大增强了下载功能,兼容了更多的下载格式,西西软件园为您提供迅雷.官方下载版本和去除会员限制版本迅雷.改进迅雷.改进了项目管理策略。简单的说,迅雷.中所有的功能改进,都将独立开发测试,只要某项目能够在版本指定的时间段内准备就绪,就能够整合至当前版本发布。若不能将延期至下一版本。这样就避免了迅雷.为了等待某项目解决问题,从而使整体发...更多>>
    下载工具排行
    (282)下载工具排行
    下载工具哪个好呢,下载工具软件排行榜出来了。第一非迅雷莫属,虽然咋雷现在越来越大了,下载速度也不给力了需要会员啦,还有偷偷上传数据。不过相比其他下载工具还是给力些了。只要自己限制迅雷上传速度就可以用了。还有就是现在浏览器都自带有自家的下载工具,速度都很给力了哦。浏览器搜狗浏览器谷歌浏览器都很给力哦。第二送给旋风吧,毕竟用户群太大了,好多朋友喜欢旋风升级的。...更多>>
    迅雷极速版
    (22)迅雷极速版
    迅雷是一款超的下载工具,可以支持所有的协议,包括,,,等。多资源超线程技术还具有互联网下载负载均衡功能,在不降低用户体验的前提下,迅雷网络可以对服务器资源进行均衡,有效降低了服务器负载。世界上最快的下载引擎再一次提速,亿用户的选择,迅雷最懂下载用户,据悉版的开发团队放弃了精简版本,全新开始打造的极速版,不仅优化升级了下载速度,界面布局也进行了全新改版,让用户可以舒心地享受迅雷极速下载体验。此外最大特...更多>>

    相关评论

    阅读本文后您有什么感想? 已有人给出评价!

    • 8 喜欢喜欢
    • 3 顶
    • 1 难过难过
    • 5 囧
    • 3 围观围观
    • 2 无聊无聊

    热门评论

    最新评论

    发表评论 查看所有评论(0)

    昵称:
    表情: 高兴 可 汗 我不要 害羞 好 下下下 送花 屎 亲亲
    字数: 0/500 (您的评论需要经过审核才能显示)