西西软件下载最安全的下载网站、值得信赖的软件下载站!
鐢熸椿鏈嶅姟
鏀粯瀹濋挶鍖�(Alipay)V10.2.53.7000 瀹夊崜鐗�鏀粯瀹濋挶鍖�(Alipay)V10.2.53.7000 瀹夊崜鐗�
鐧惧害鍦板浘瀵艰埅2022V15.12.10 瀹夊崜鎵嬫満鐗�鐧惧害鍦板浘瀵艰埅2022V15.12.10 瀹夊崜鎵嬫満鐗�
鎵嬫満娣樺疂瀹㈡埛绔痸10.8.40瀹樻柟鏈€鏂扮増鎵嬫満娣樺疂瀹㈡埛绔痸10.8.40瀹樻柟鏈€鏂扮増
鐣呴€旂綉鎵嬫満瀹㈡埛绔痸5.6.9 瀹樻柟鏈€鏂扮増鐣呴€旂綉鎵嬫満瀹㈡埛绔痸5.6.9 瀹樻柟鏈€鏂扮増
鍗冭亰鐭ヨ瘑鏈嶅姟appv4.5.1瀹樻柟鐗�鍗冭亰鐭ヨ瘑鏈嶅姟appv4.5.1瀹樻柟鐗�
褰遍煶鎾斁
p2psearcher瀹夊崜鐗�7.3  鎵嬫満鐗�p2psearcher瀹夊崜鐗�7.3 鎵嬫満鐗�
閰风嫍闊充箰2022瀹樻柟鐗圴11.0.8 瀹樻柟瀹夊崜鐗�閰风嫍闊充箰2022瀹樻柟鐗圴11.0.8 瀹樻柟瀹夊崜鐗�
鐖卞鑹烘墜鏈虹増v13.1.0鐖卞鑹烘墜鏈虹増v13.1.0
鐧惧害褰遍煶7.13.0 瀹樻柟鏈€鏂扮増鐧惧害褰遍煶7.13.0 瀹樻柟鏈€鏂扮増
褰遍煶鍏堥攱v6.9.0 瀹夊崜鎵嬫満鐗�褰遍煶鍏堥攱v6.9.0 瀹夊崜鎵嬫満鐗�
闃呰宸ュ叿
鑵捐鍔ㄦ极V9.11.5 瀹夊崜鐗�鑵捐鍔ㄦ极V9.11.5 瀹夊崜鐗�
涔︽棗灏忚鍏嶈垂鐗堟湰v11.5.5.153 瀹樻柟鏈€鏂扮増涔︽棗灏忚鍏嶈垂鐗堟湰v11.5.5.153 瀹樻柟鏈€鏂扮増
QQ闃呰鍣╝ppV7.7.1.910 瀹樻柟鏈€鏂扮増QQ闃呰鍣╝ppV7.7.1.910 瀹樻柟鏈€鏂扮増
鎳掍汉鐣呭惉鍚功appv7.1.5 瀹樻柟瀹夊崜鐗�鎳掍汉鐣呭惉鍚功appv7.1.5 瀹樻柟瀹夊崜鐗�
璧风偣璇讳功app鏂扮増鏈�20227.9.186 瀹夊崜鐗�璧风偣璇讳功app鏂扮増鏈�20227.9.186 瀹夊崜鐗�
閲戣瀺鐞嗚储
骞冲畨璇佸埜瀹塭鐞嗚储V9.1.0.1 瀹樻柟瀹夊崜鐗�骞冲畨璇佸埜瀹塭鐞嗚储V9.1.0.1 瀹樻柟瀹夊崜鐗�
娴烽€氳瘉鍒告墜鏈虹増(e娴烽€氳储)8.71 瀹樻柟瀹夊崜鐗�娴烽€氳瘉鍒告墜鏈虹増(e娴烽€氳储)8.71 瀹樻柟瀹夊崜鐗�
涓滄捣璇佸埜涓滄捣鐞嗚储4.0.5 瀹夊崜鐗�涓滄捣璇佸埜涓滄捣鐞嗚储4.0.5 瀹夊崜鐗�
涓摱璇佸埜绉诲姩鐞嗚储杞欢6.02.010 瀹樻柟瀹夊崜鐗�涓摱璇佸埜绉诲姩鐞嗚储杞欢6.02.010 瀹樻柟瀹夊崜鐗�
鍗庨緳璇佸埜灏忛噾鎵嬫満鐞嗚储杞欢3.2.4 瀹夊崜鐗�鍗庨緳璇佸埜灏忛噾鎵嬫満鐞嗚储杞欢3.2.4 瀹夊崜鐗�
鎵嬫満閾惰
绂忓缓鍐滄潙淇$敤绀炬墜鏈洪摱琛屽鎴风2.3.4 瀹夊崜鐗�绂忓缓鍐滄潙淇$敤绀炬墜鏈洪摱琛屽鎴风2.3.4 瀹夊崜鐗�
鏄撳埗浣滆棰戝壀杈慳pp4.1.16瀹夊崜鐗�鏄撳埗浣滆棰戝壀杈慳pp4.1.16瀹夊崜鐗�
鏀粯瀹濋挶鍖�(Alipay)V10.2.53.7000 瀹夊崜鐗�鏀粯瀹濋挶鍖�(Alipay)V10.2.53.7000 瀹夊崜鐗�
涓浗宸ュ晢閾惰鎵嬫満閾惰appV7.0.1.2.5 瀹夊崜鐗�涓浗宸ュ晢閾惰鎵嬫満閾惰appV7.0.1.2.5 瀹夊崜鐗�
涓浗閾惰鎵嬫満閾惰瀹㈡埛绔�7.2.5 瀹樻柟瀹夊崜鐗�涓浗閾惰鎵嬫満閾惰瀹㈡埛绔�7.2.5 瀹樻柟瀹夊崜鐗�
浼戦棽鐩婃櫤
鑵捐鐚庨奔杈句汉鎵嬫満鐗圴2.3.0.0 瀹樻柟瀹夊崜鐗�鑵捐鐚庨奔杈句汉鎵嬫満鐗圴2.3.0.0 瀹樻柟瀹夊崜鐗�
鍔茶垶鍥㈠畼鏂规鐗堟墜娓竩1.2.1瀹樻柟鐗�鍔茶垶鍥㈠畼鏂规鐗堟墜娓竩1.2.1瀹樻柟鐗�
楗ラタ椴ㄩ奔杩涘寲鏃犻檺閽荤煶鐗坴7.8.0.0瀹夊崜鐗�楗ラタ椴ㄩ奔杩涘寲鏃犻檺閽荤煶鐗坴7.8.0.0瀹夊崜鐗�
妞嶇墿澶ф垬鍍靛案鍏ㄦ槑鏄�1.0.91 瀹夊崜鐗�妞嶇墿澶ф垬鍍靛案鍏ㄦ槑鏄�1.0.91 瀹夊崜鐗�
鍔ㄤ綔灏勫嚮
鍦颁笅鍩庣獊鍑昏€卋t鐗�1.6.3 瀹樻柟鐗�鍦颁笅鍩庣獊鍑昏€卋t鐗�1.6.3 瀹樻柟鐗�
瑁呯敳鑱旂洘1.325.157 瀹夊崜鐗�瑁呯敳鑱旂洘1.325.157 瀹夊崜鐗�
鍦f枟澹槦鐭㈤泦缁搗4.2.1 瀹夊崜鐗�鍦f枟澹槦鐭㈤泦缁搗4.2.1 瀹夊崜鐗�
閬ぉ3D鎵嬫父1.0.9瀹夊崜鐗�閬ぉ3D鎵嬫父1.0.9瀹夊崜鐗�
濉旈槻娓告垙
瀹夊崜妞嶇墿澶ф垬鍍靛案2榛戞殫鏃朵唬淇敼鐗圴1.9.5 鏈€鏂扮増瀹夊崜妞嶇墿澶ф垬鍍靛案2榛戞殫鏃朵唬淇敼鐗圴1.9.5 鏈€鏂扮増
涔辨枟瑗挎父2v1.0.150瀹夊崜鐗�涔辨枟瑗挎父2v1.0.150瀹夊崜鐗�
淇濆崼钀濆崪3鏃犻檺閽荤煶鏈€鏂扮増v2.0.0.1 瀹夊崜鐗�淇濆崼钀濆崪3鏃犻檺閽荤煶鏈€鏂扮増v2.0.0.1 瀹夊崜鐗�
鍙h鑻遍泟鍗曟満鐗�1.2.0 瀹夊崜鐗�鍙h鑻遍泟鍗曟満鐗�1.2.0 瀹夊崜鐗�
灏忓皬鍐涘洟瀹夊崜鐗�2.7.4 鏃犻檺閲戝竵淇敼鐗�灏忓皬鍐涘洟瀹夊崜鐗�2.7.4 鏃犻檺閲戝竵淇敼鐗�
璧涜溅绔炴妧
鐧诲北璧涜溅2鎵嬫父1.47.1  瀹夊崜鐗�鐧诲北璧涜溅2鎵嬫父1.47.1 瀹夊崜鐗�
涓€璧锋潵椋炶溅瀹夊崜鐗坴2.9.14 鏈€鏂扮増涓€璧锋潵椋炶溅瀹夊崜鐗坴2.9.14 鏈€鏂扮増
璺戣窇鍗′竵杞︽墜鏈虹増瀹樻柟鏈€鏂扮増v1.16.2 瀹夊崜鐗�璺戣窇鍗′竵杞︽墜鏈虹増瀹樻柟鏈€鏂扮増v1.16.2 瀹夊崜鐗�
鐙傞噹椋欒溅8鏋侀€熷噷浜戜慨鏀圭増(鍏嶆暟鎹寘)v4.6.0j 閲戝竵鏃犻檺鐗�鐙傞噹椋欒溅8鏋侀€熷噷浜戜慨鏀圭増(鍏嶆暟鎹寘)v4.6.0j 閲戝竵鏃犻檺鐗�
鐧句箰鍗冪偖鎹曢奔2021鏈€鏂扮増5.78 瀹夊崜鐗�鐧句箰鍗冪偖鎹曢奔2021鏈€鏂扮増5.78 瀹夊崜鐗�
瑙掕壊鎵紨
姊﹀够鍓戣垶鑰呭彉鎬佺増1.0.1.2瀹夊崜鐗�姊﹀够鍓戣垶鑰呭彉鎬佺増1.0.1.2瀹夊崜鐗�
浠欏浼犺ro澶嶅叴瀹夊崜鐗�1.20.3鏈€鏂扮増浠欏浼犺ro澶嶅叴瀹夊崜鐗�1.20.3鏈€鏂扮増
姊﹀够璇涗粰鎵嬫父鐗�1.3.6 瀹樻柟瀹夊崜鐗�姊﹀够璇涗粰鎵嬫父鐗�1.3.6 瀹樻柟瀹夊崜鐗�
鐜嬭€呰崳鑰€V3.72.1.1 瀹夊崜鏈€鏂板畼鏂圭増鐜嬭€呰崳鑰€V3.72.1.1 瀹夊崜鏈€鏂板畼鏂圭増
璋佸灏忚溅寮烘墜鏈虹増v1.0.49 瀹夊崜鐗�璋佸灏忚溅寮烘墜鏈虹増v1.0.49 瀹夊崜鐗�
绯荤粺杞欢
mac纾佺洏鍒嗗尯宸ュ叿(Paragon Camptune X)V10.8.12瀹樻柟鏈€鏂扮増mac纾佺洏鍒嗗尯宸ュ叿(Paragon Camptune X)V10.8.12瀹樻柟鏈€鏂扮増
鑻规灉鎿嶄綔绯荤粺MACOSX 10.9.4 Mavericks瀹屽叏鍏嶈垂鐗�鑻规灉鎿嶄綔绯荤粺MACOSX 10.9.4 Mavericks瀹屽叏鍏嶈垂鐗�
Rar瑙e帇鍒╁櫒mac鐗坴1.4 瀹樻柟鍏嶈垂鐗�Rar瑙e帇鍒╁櫒mac鐗坴1.4 瀹樻柟鍏嶈垂鐗�
Mac瀹夊崜妯℃嫙鍣�(ARC Welder)v1.0 瀹樻柟鏈€鏂扮増Mac瀹夊崜妯℃嫙鍣�(ARC Welder)v1.0 瀹樻柟鏈€鏂扮増
Charles for MacV3.9.3瀹樻柟鐗�Charles for MacV3.9.3瀹樻柟鐗�
缃戠粶宸ュ叿
鎼滅嫍娴忚鍣╩ac鐗坴5.2 瀹樻柟姝e紡鐗�鎼滅嫍娴忚鍣╩ac鐗坴5.2 瀹樻柟姝e紡鐗�
閿愭嵎瀹㈡埛绔痬ac鐗圴1.33瀹樻柟鏈€鏂扮増閿愭嵎瀹㈡埛绔痬ac鐗圴1.33瀹樻柟鏈€鏂扮増
蹇墮mac鐗坴1.3.2 瀹樻柟姝e紡鐗�蹇墮mac鐗坴1.3.2 瀹樻柟姝e紡鐗�
鏋佺偣浜旂瑪Mac鐗�7.13姝e紡鐗�鏋佺偣浜旂瑪Mac鐗�7.13姝e紡鐗�
濯掍綋宸ュ叿
Apple Logic Pro xV10.3.2Apple Logic Pro xV10.3.2
Adobe Premiere Pro CC 2017 mac鐗坴11.0.0 涓枃鐗�Adobe Premiere Pro CC 2017 mac鐗坴11.0.0 涓枃鐗�
鍗冨崈闈欏惉Mac鐗圴9.1.1 瀹樻柟鏈€鏂扮増鍗冨崈闈欏惉Mac鐗圴9.1.1 瀹樻柟鏈€鏂扮増
Mac缃戠粶鐩存挱杞欢(MacTV)v0.121 瀹樻柟鏈€鏂扮増Mac缃戠粶鐩存挱杞欢(MacTV)v0.121 瀹樻柟鏈€鏂扮増
Adobe Fireworks CS6 Mac鐗圕S6瀹樻柟绠€浣撲腑鏂囩増Adobe Fireworks CS6 Mac鐗圕S6瀹樻柟绠€浣撲腑鏂囩増
鍥惧舰鍥惧儚
AutoCAD2015 mac涓枃鐗堟湰v1.0 瀹樻柟姝e紡鐗�AutoCAD2015 mac涓枃鐗堟湰v1.0 瀹樻柟姝e紡鐗�
Adobe Photoshop cs6 mac鐗坴13.0.3 瀹樻柟涓枃鐗�Adobe Photoshop cs6 mac鐗坴13.0.3 瀹樻柟涓枃鐗�
Mac鐭㈤噺缁樺浘杞欢(Sketch mac)v3.3.2 涓枃鐗�Mac鐭㈤噺缁樺浘杞欢(Sketch mac)v3.3.2 涓枃鐗�
Adobe After Effects cs6 mac鐗坴1.0涓枃鐗�Adobe After Effects cs6 mac鐗坴1.0涓枃鐗�
Adobe InDesign cs6 mac1.0 瀹樻柟涓枃鐗�Adobe InDesign cs6 mac1.0 瀹樻柟涓枃鐗�
搴旂敤杞欢
Mac鐗堝揩鎾�1.1.26 瀹樻柟姝e紡鐗圼dmg]Mac鐗堝揩鎾�1.1.26 瀹樻柟姝e紡鐗圼dmg]
Mac璇诲啓NTFS(Paragon NTFS for Mac)12.1.62 瀹樻柟姝e紡鐗�Mac璇诲啓NTFS(Paragon NTFS for Mac)12.1.62 瀹樻柟姝e紡鐗�
杩呴浄10 for macv3.4.1.4368 瀹樻柟鏈€鏂扮増杩呴浄10 for macv3.4.1.4368 瀹樻柟鏈€鏂扮増
Mac涓嬫渶寮哄ぇ鐨勭郴缁熸竻鐞嗗伐鍏�(CleanMyMac for mac)v3.1.1 姝e紡鐗�Mac涓嬫渶寮哄ぇ鐨勭郴缁熸竻鐞嗗伐鍏�(CleanMyMac for mac)v3.1.1 姝e紡鐗�
鑻规灉BootCamp5.1.5640 瀹樻柟鏈€鏂扮増鑻规灉BootCamp5.1.5640 瀹樻柟鏈€鏂扮増

首页编程开发其它知识 → logistic回归和广义线性模型

logistic回归和广义线性模型

相关文章发表评论 来源:西西整理时间:2013/1/6 0:55:21字体大小:A-A+

作者:西西点击:0次评论:0次标签: 线性模型

  • 类型:翻译工具大小:4.4M语言:多国语言[中文] 评分:8.1
  • 标签:
立即下载

logistic回归:

Logistic回归的应用条件是:

① 独立性。各观测对象间是相互独立的;

② LogitP与自变量是线性关系;

③ 样本量。经验值是病例对照各50例以上或为自变量的5-10倍(以10倍为宜),不过随着统计技术和软件的发展,样本量较小或不能进行似然估计的情况下可采用精确logistic回归分析,此时要求分析变量不能太多,且变量分类不能太多;

④ 当队列资料进行logistic回归分析时,观察时间应该相同,否则需考虑观察时间的影响(建议用Poisson回归)。

logistic回归一般是用来解决二元分类问题,它是从贝努力分布转换而来的

  hθ(x) = g(z)=1/1+e-z ;z=θTx

  最大似然估计L(θ) = p(Y|X;θ)

           =∏p(y(i)|x(i);θ)

           =∏(hθ(x))y(i)(1-hθ(x))1-y(i)

     l(θ) = logL(θ)

           =Σy(i)loghθ(x(i))+(1-y(i))log(1-hθ(x(i)))

   θ的优化目的就是让最大似然估计最大,用梯度上升法求θ

  θj=θj+α∂l(θ)/∂θj=θj+α(y(i)-hθ(x(i)))x(i)j

  logistic回归用梯度上升法求得的θ的迭代公式看起来跟线性回归很像,但这跟线性回归是有本质区别的

  1.线性回归是由高斯分布推导而来,而logistic回归是由贝努力分布推导而来

  2.二种回归的最大似然估计是不一样的,只不过求完导后的结果看似相同

      3.二种回归hθ(x)是不同的

广义线性模型:

广义线性模型是线性模型的扩展,其特点是不强行改变数据的自然度量,数据可以具有非线性和非恒定方差结构[59],主要是通过联结函数g()(link function),建立响应变量Y的数学期望值 与线性组合的预测变量P之间的关系:。与线性模型相比,GLM模型中Y的分布可以是任何形式的指数分布(如高斯分布、泊松分布、二项式分布),联结函数可以是任何单调可微函数(如对数函数logarithm 或逻辑函数logit)。Y的方差通过方程函数 依赖于其数学期望值 ,这里 ,为比例(或者称为离差)参数[57-58,60]。这些优点使得GLM模型可以处理非正态分布的响应变量,同时可包含定性、半定量的预测变量;Y通过连接函数g(E(Y))与线性预测因子P建立联系,不仅确保线性关系,且可保证预测值落在响应变量的变幅内,并可解决数据过度离散的问题,从而使GLM逐渐成为植被-环境关系研究的重要模型,并得到越来越多的关注。

  之前已经写了线性回归和logistic回归,基本的形式都是先设定hθ(x),然后求最最大似然估计L(θ),然后求出l(θ)=logL(θ),然后用梯度上升法或其它方法求出θ,二种回归如此想你的原因就是在于它都都是广义线性模型里的一员。

  如果一个概念分布可以表示成p(y;η)=b(y)exp(ηTT(y)-a(η))时,那么这个概率分布可以称之为指数分布

  贝努力分布转换为指数分布:p(y;ø)=øy(1-ø)1-y

                   =exp(log(øy(1-ø)1-y))

                   =exp(ylogø+(1-y)log(1-ø))

                   =exp((log(ø/(1-ø)))y+log(1-ø))

  根据上面指数分布的公式可得出:

                 b(y)=1

                 η=logø/(1-ø);ø=1/(1+e-η)

                 T(y) = y

                 a(η)=-log(1-ø)

  高斯分布转换为指数(因为σ的取值对最后的结果没影响,所以设σ2=1):p(y;μ)=(1/2π)exp(-1/2(y-μ)2);2π上有根号

                                          =(1/2π)exp(-1/2y2).exp(μy-1/2μ2)

  根据上面指数分布的公式可得出:

                b(y)=(1/2π)exp(-1/2y2);2π上有根号

                                           η=μ

                                           T(y) = y

                                           a(η)=1/2μ2

  广义线性模型的三步是:
        1.将y|x;θ变换成以η为参数的指数分布的形式

          2.因为h(x)=E[y|x],所以能过第1步的变换可以得到E[y|x]与η的对应关系(对于logistic回归,期望值是ø,ø与η的关系是ø=1/(1+e-η);对于线性回归,期望值是μ,μ与η的关系是η=μ)

        3.设定η=θTx(如果η是一个向量值的话,那么ηi=θiTx)

相关评论

阅读本文后您有什么感想? 已有人给出评价!

  • 8 喜欢喜欢
  • 3 顶
  • 1 难过难过
  • 5 囧
  • 3 围观围观
  • 2 无聊无聊

热门评论

最新评论

发表评论 查看所有评论(0)

昵称:
表情: 高兴 可 汗 我不要 害羞 好 下下下 送花 屎 亲亲
字数: 0/500 (您的评论需要经过审核才能显示)
推荐文章

没有数据